Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud. II. A Parameter Study

2006 ◽  
Vol 642 (1) ◽  
pp. 270-282 ◽  
Author(s):  
Takahiro Kudoh ◽  
Shantanu Basu
2003 ◽  
Vol 595 (2) ◽  
pp. 842-857 ◽  
Author(s):  
Takahiro Kudoh ◽  
Shantanu Basu

Author(s):  
Steven Federman ◽  
David Lambert ◽  
Gregory Mace ◽  
Nicolas Flagey ◽  
Paul Goldsmith ◽  
...  
Keyword(s):  

2017 ◽  
Vol 59 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Benjamin Launert ◽  
Radosław Szczerba ◽  
Marcin Gajewski ◽  
Michael Rhode ◽  
Hartmut Pasternak ◽  
...  

1997 ◽  
Vol 478 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Shigetomo Shiki ◽  
Masatoshi Ohishi ◽  
Shuji Deguchi

1999 ◽  
Vol 515 (1) ◽  
pp. 275-285 ◽  
Author(s):  
R. M. Crutcher ◽  
D. A. Roberts ◽  
T. H. Troland ◽  
W. M. Goss

1999 ◽  
Vol 510 (1) ◽  
pp. 291-304 ◽  
Author(s):  
Peter Wannier ◽  
B‐G Andersson ◽  
Bryan E. Penprase ◽  
S. R. Federman
Keyword(s):  

1998 ◽  
Vol 509 (1) ◽  
pp. 299-308 ◽  
Author(s):  
D. C. Lis ◽  
E. Serabyn ◽  
Jocelyn Keene ◽  
C. D. Dowell ◽  
D. J. Benford ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Wenzheng Zhuang ◽  
Chao Yang ◽  
Zhigang Wu

Hybrid corrugated sandwich (HCS) plates have become a promising candidate for novel thermal protection systems (TPS) due to their multi-functionality of load bearing and thermal protection. For hypersonic vehicles, the novel TPS that performs some structural functions is a potential method of saving weight, which is significant in reducing expensive design/manufacture cost. Considering the novel TPS exposed to severe thermal and aerodynamic environments, the mechanical stability of the HCS plates under fluid-structure-thermal coupling is crucial for preliminary design of the TPS. In this paper, an innovative layerwise finite element model of the HCS plates is presented, and coupled fluid-structure-thermal analysis is performed with a parameter study. The proposed method is validated to be accurate and efficient against commercial software simulation. Results have shown that the mechanical instability of the HCS plates can be induced by fluid-structure coupling and further accelerated by thermal effect. The influences of geometric parameters on thermal buckling and dynamic stability present opposite tendencies, indicating a tradeoff is required for the TPS design. The present analytical model and numerical results provide design guidance in the practical application of the novel TPS.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


Author(s):  
Simon Casassus ◽  
Matías Vidal ◽  
Carla Arce-Tord ◽  
Clive Dickinson ◽  
Glenn J White ◽  
...  

Abstract Cm-wavelength radio continuum emission in excess of free-free, synchrotron and Rayleigh-Jeans dust emission (excess microwave emission, EME), and often called ‘anomalous microwave emission’, is bright in molecular cloud regions exposed to UV radiation, i.e. in photo-dissociation regions (PDRs). The EME correlates with IR dust emission on degree angular scales. Resolved observations of well-studied PDRs are needed to compare the spectral variations of the cm-continuum with tracers of physical conditions and of the dust grain population. The EME is particularly bright in the regions of the ρ Ophiuchi molecular cloud (ρ Oph) that surround the earliest type star in the complex, HD 147889, where the peak signal stems from the filament known as the ρ Oph-W PDR. Here we report on ATCA observations of ρ Oph-W that resolve the width of the filament. We recover extended emission using a variant of non-parametric image synthesis performed in the sky plane. The multi-frequency 17 GHz to 39 GHz mosaics reveal spectral variations in the cm-wavelength continuum. At ∼30 arcsec resolutions, the 17-20 GHz intensities follow tightly the mid-IR, Icm∝I(8 μm), despite the breakdown of this correlation on larger scales. However, while the 33-39 GHz filament is parallel to IRAC 8 μm, it is offset by 15–20 arcsec towards the UV source. Such morphological differences in frequency reflect spectral variations, which we quantify spectroscopically as a sharp and steepening high-frequency cutoff, interpreted in terms of the spinning dust emission mechanism as a minimum grain size acutoff ∼ 6 ± 1 Å that increases deeper into the PDR.


Sign in / Sign up

Export Citation Format

Share Document