scholarly journals New Low‐Mass Stars and Brown Dwarfs with Disks in the Chamaeleon I Star‐Forming Region

2008 ◽  
Vol 684 (1) ◽  
pp. 654-662 ◽  
Author(s):  
K. L. Luhman ◽  
A. A. Muench
2003 ◽  
Vol 211 ◽  
pp. 133-136
Author(s):  
Michael C. Liu

We present some results from a systematic survey for disks around spectroscopically identified young brown dwarfs and very low mass stars. We find that ≈75% of our sample show intrinsic IR excesses, indicative of circum(sub)stellar disks. The observed excesses are well-correlated with Hα emission, consistent with a common disk accretion origin. Because the excesses are modest, conventional analyses using only IR colors would have missed most of the sources with disks. In the same star-forming regions, we find that disks around brown dwarfs and T Tauri stars are contemporaneous; assuming coevality, this demonstrates that substellar disks are at least as long-lived as stellar disks. Altogether, the frequency and properties of circumstellar disks are similar from the stellar regime down to the substellar and planetary-mass regime. This offers compelling evidence of a common origin for most stars and brown dwarfs.


2012 ◽  
Vol 547 ◽  
pp. A80 ◽  
Author(s):  
A. Bayo ◽  
D. Barrado ◽  
N. Huélamo ◽  
M. Morales-Calderón ◽  
C. Melo ◽  
...  

2011 ◽  
Vol 536 ◽  
pp. A63 ◽  
Author(s):  
A. Bayo ◽  
D. Barrado ◽  
J. Stauffer ◽  
M. Morales-Calderón ◽  
C. Melo ◽  
...  

2003 ◽  
Vol 211 ◽  
pp. 143-144
Author(s):  
Russel White ◽  
Gibor Basri

We present high resolution optical spectra obtained with the Keck I telescope of low mass T Tauri stars and brown dwarfs in the Taurus star forming region. Based on the inferred photospheric and circumstellar properties, we conclude that objects in Taurus with masses as low as 50 Jupiters form and evolve in the same way as higher-mass T Tauri stars, but with smaller disks and shorter disk lifetimes.


2021 ◽  
Vol 32 ◽  
Author(s):  
Phan Bao Ngoc

Brown dwarfs with masses below 0.075 solar masses are thought to form like low-mass stars (e.g., the Sun).However, it is still unclear how the physical formation processes occurin brown dwarfs at the ealiest stages (i.e., proto-brown dwarfs) of their formation.Up to date, only a few proto-brown dwarfs have been detected.The detection of proto-brown dwarfs offers us excellent benchmarks to studythe formation process of brown dwarfs, and thus understand their formation mechanism.In this paper, we present our identification of a proto-brown dwarf candidate in the star-forming regionrho Ophiuchus.The candidate shows a small-scale bipolar molecular outlfow that is similar to the outflows observed inother young brown dwarfs. The detection of this candidateprovides us with additional important implications for the formation mechanism of brown dwarfs.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2020 ◽  
Vol 499 (1) ◽  
pp. 668-680
Author(s):  
Alejandro González-Samaniego ◽  
Enrique Vazquez-Semadeni

ABSTRACT We use two hydrodynamical simulations (with and without photoionizing feedback) of the self-consistent evolution of molecular clouds (MCs) undergoing global hierarchical collapse (GHC), to study the effect of the feedback on the structural and kinematic properties of the gas and the stellar clusters formed in the clouds. During this early stage, the evolution of the two simulations is very similar (implying that the feedback from low-mass stars does not affect the cloud-scale evolution significantly) and the star-forming region accretes faster than it can convert gas into stars, causing the instantaneous measured star formation efficiency (SFE) to remain low even in the absence of significant feedback. Afterwards, the ionizing feedback first destroys the filamentary supply to star-forming hubs and ultimately removes the gas from it, thus first reducing the star formation (SF) and finally halting it. The ionizing feedback also affects the initial kinematics and spatial distribution of the forming stars because the gas being dispersed continues to form stars, which inherit its motion. In the non-feedback simulation, the groups remain highly compact and do not mix, while in the run with feedback, the gas dispersal causes each group to expand, and the cluster expansion thus consists of the combined expansion of the groups. Most secondary star-forming sites around the main hub are also present in the non-feedback run, implying a primordial rather than triggered nature. We do find one example of a peripheral star-forming site that appears only in the feedback run, thus having a triggered origin. However, this appears to be the exception rather than the rule, although this may be an artefact of our simplified radiative transfer scheme.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


Sign in / Sign up

Export Citation Format

Share Document