scholarly journals A Multiwavelength Differential Imaging Experiment for the High Contrast Imaging Testbed

2009 ◽  
Vol 121 (881) ◽  
pp. 716-727 ◽  
Author(s):  
Beth Biller ◽  
John Trauger ◽  
Dwight Moody ◽  
Laird Close ◽  
Andreas Kuhnert ◽  
...  
2018 ◽  
Vol 617 ◽  
pp. A144 ◽  
Author(s):  
H. J. Hoeijmakers ◽  
H. Schwarz ◽  
I. A. G. Snellen ◽  
R. J. de Kok ◽  
M. Bonnefoy ◽  
...  

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars. Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ~ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star. Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO’s Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features. Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T = 1700 K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19–27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7 × 10−5 in this 2.5 hr data set, a factor ~40 below the raw noise level at an angular distance of 0.36′′ from the star. Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.


2013 ◽  
Vol 8 (S299) ◽  
pp. 21-25
Author(s):  
Anne-Lise Maire ◽  
Anthony Boccaletti ◽  
Julien Rameau ◽  
Gaël Chauvin ◽  
Anne-Marie Lagrange ◽  
...  

AbstractSpectral differential imaging (SDI) is part of the observing strategy of current and on-going high-contrast imaging instruments on ground-based telescopes. Although it improves the star light rejection, SDI attenuates the signature of off-axis companions to the star, just like angular differential imaging (ADI). However, the attenuation due to SDI has the peculiarity of being dependent on the spectral properties of the companions. To date, no study has investigated these effects. Our team is addressing this problem based on data from a direct imaging survey of 16 stars combining the phase-mask coronagraph, the SDI and the ADI modes of VLT/NaCo. The objective of the survey is to search for cool (Teff<1000-1300 K) giant planets at separations of 5-10 AU orbiting young, nearby stars (<200 Myr, <25 pc). The data analysis did not yield any detections. As for the estimation of the sensivity limits of SDI-processed images, we show that it requires a different analysis than that used in ADI-based surveys. Based on a method using the flux predictions of evolutionary models and avoiding the estimation of contrast, we determine directly the mass sensivity limits of the survey for the ADI processing alone and with the combination of SDI and ADI. We show that SDI does not systematically improve the sensitivity due to the spectral properties and self-subtraction of point sources.


2006 ◽  
Vol 641 (1) ◽  
pp. 556-564 ◽  
Author(s):  
Christian Marois ◽  
David Lafreniere ◽  
Rene Doyon ◽  
Bruce Macintosh ◽  
Daniel Nadeau

2007 ◽  
Vol 660 (1) ◽  
pp. 770-780 ◽  
Author(s):  
David Lafreniere ◽  
Christian Marois ◽  
Rene Doyon ◽  
Daniel Nadeau ◽  
Etienne Artigau

Author(s):  
Uwe Lücken ◽  
Michael Felsmann ◽  
Wim M. Busing ◽  
Frank de Jong

A new microscope for the study of life science specimen has been developed. Special attention has been given to the problems of unstained samples, cryo-specimens and x-ray analysis at low concentrations.A new objective lens with a Cs of 6.2 mm and a focal length of 5.9 mm for high-contrast imaging has been developed. The contrast of a TWIN lens (f = 2.8 mm, Cs = 2 mm) and the BioTWTN are compared at the level of mean and SD of slow scan CCD images. Figure 1a shows 500 +/- 150 and Fig. 1b only 500 +/- 40 counts/pixel. The contrast-forming mechanism for amplitude contrast is dependent on the wavelength, the objective aperture and the focal length. For similar image conditions (same voltage, same objective aperture) the BioTWIN shows more than double the contrast of the TWIN lens. For phasecontrast specimens (like thin frozen-hydrated films) the contrast at Scherzer focus is approximately proportional to the √ Cs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shangfeng Wang ◽  
Yong Fan ◽  
Dandan Li ◽  
Caixia Sun ◽  
Zuhai Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document