scholarly journals Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans

2015 ◽  
Vol 88 (5) ◽  
pp. 550-563 ◽  
Author(s):  
Eric J. Gangloff ◽  
David Vleck ◽  
Anne M. Bronikowski
2016 ◽  
Vol 73 (10) ◽  
pp. 1493-1506 ◽  
Author(s):  
David Allen ◽  
Jordan Rosenfeld ◽  
Jeffrey Richards

Adaptive trade-offs define the trait combinations that differentiate taxa and allow coexistence along environmental gradients. To understand the physiological trade-offs associated with growth, we examined relationships among metabolic rate, digestive capacity, tissue energy content, and growth in juveniles of three strains of rainbow trout (Oncorhynchus mykiss) that differ in growth. Fish were reared under satiation, 1% of body mass per day, and complete food deprivation treatments to assess differences in performance and adaptive trade-offs along a gradient of resource availability. The fast-growing hatchery strain had higher standard metabolic rate (SMR), lower aerobic scope, and potentially lower maximum metabolic rates, suggesting that high growth trades off against a reduced capacity to do metabolic work. Trout with high growth rates also generally had larger gastrointestinal tracts, maximum food consumption, and growth efficiency. Results demonstrate (i) higher SMR of fast growers appears to be related to a greater investment in high-maintenance digestive tissue that supports rapid growth; (ii) growth appears to trade off against active metabolism; and (iii) selection on growth involves a suite of integrated physiological and anatomical traits that are affected by both genotype and environment (ration).


2020 ◽  
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

AbstractAll life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth, and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast-slow life history continuum. However, empirical evidence of a relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life history traits – maximum body mass, generation length, and growth performance – explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.


2021 ◽  
Vol 288 (1953) ◽  
pp. 20210910
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

All life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast–slow life-history continuum. However, empirical evidence of a direct interspecific relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life-history traits—maximum body mass, generation length and growth performance—explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life-history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.


2007 ◽  
Vol 274 (1612) ◽  
pp. 943-950 ◽  
Author(s):  
Amanda M Sparkman ◽  
Stevan J Arnold ◽  
Anne M Bronikowski

Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans . We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence.


Sign in / Sign up

Export Citation Format

Share Document