Wildfire effects on mass and thermal tolerance of Hydropsyche oslari (Trichoptera) in southwestern USA montane grassland streams

2021 ◽  
Author(s):  
Lauren Kremer ◽  
Colleen A. Caldwell
2003 ◽  
Vol 69 (7) ◽  
pp. 4123-4128 ◽  
Author(s):  
R. T. Bacon ◽  
J. R. Ransom ◽  
J. N. Sofos ◽  
P. A. Kendall ◽  
K. E. Belk ◽  
...  

ABSTRACT The heat resistance of susceptible and multiantimicrobial-resistant Salmonella strains grown to stationary phase in glucose-free tryptic soy broth supplemented with 0.6% yeast extract (TSBYE−G; nonadapted), in regular (0.25% glucose) TSBYE, or in TSBYE−G with 1.00% added glucose (TSBYE+G; acid adapted) was determined at 55, 57, 59, and 61°C. Cultures were heated in sterile 0.1% buffered peptone water (50 μl) in heat-sealed capillary tubes immersed in a thermostatically controlled circulating-water bath. Decimal reduction times (D values) were calculated from survival curves having r 2 values of >0.90 as a means of comparing thermal tolerance among variables. D 59°C values increased (P < 0.05) from 0.50 to 0.58 to 0.66 min for TSBYE−G, TSBYE, and TSBYE+G cultures, respectively. D 61°C values of antimicrobial-susceptible Salmonella strains increased (P < 0.05) from 0.14 to 0.19 as the glucose concentration increased from 0.00 to 1.00%, respectively, while D 61°C values of multiantimicrobial-resistant Salmonella strains did not differ (P > 0.05) between TSBYE−G and TSBYE+G cultures. When averaged across glucose levels and temperatures, there were no differences (P > 0.05) between the D values of susceptible and multiantimicrobial-resistant inocula. Collectively, D values ranged from 4.23 to 5.39, 1.47 to 1.81, 0.50 to 0.66, and 0.16 to 0.20 min for Salmonella strains inactivated at 55, 57, 59, and 61°C, respectively. zD values were 1.20, 1.48, and 1.49°C for Salmonella strains grown in TSBYE+G, TSBYE, and TSBYE−G, respectively, while the corresponding activation energies of inactivation were 497, 493, and 494 kJ/mol. Study results suggested a cross-protective effect of acid adaptation on thermal inactivation but no association between antimicrobial susceptibility and the ability of salmonellae to survive heat stress.


Author(s):  
Matteo Marchioro ◽  
Massimo Faccoli

AbstractThe Walnut Twig Beetle (WTB), Pityophthorus juglandis Blackman, is a small bark beetle native to Mexico and Southwestern USA recorded for the first time in Europe (NE Italy) in 2013. WTB attacks walnut (Juglans spp.) and wingnut trees (Pterocarya spp.) and is the vector of Geosmithia morbida Kolarík et al., a pathogen causing the thousand cankers disease (TCD). WTB and TCD represent a serious threat for walnut orchards in Europe. Spatiotemporal data of the WTB-TCD infestations recorded from an 8-year-long (2013–2020) monitoring conducted in 106 walnut orchards of NE Italy were used to develop a model in order to analyze: (i) the effective dispersal capacity of WTB, (ii) the factors affecting dispersal and (iii) the colonization risk of healthy walnut orchards. We registered a mean annual dispersal of 9.4 km, with peaks of about 40 km. Pest dispersal is affected by distance of suitable hosts from the nearest infested site, number of walnut orchards in the surroundings (both infested and healthy), orchard size and walnut species in the orchard. Using the model, it was also possible to calculate the colonization risk of a specific walnut orchard according to its characteristics showing, for instance, that a medium-size (5,000 trees) black walnut orchard located at 25 km from the nearest infested orchard has an infestation risk of about 50% of probability.


2021 ◽  
Vol 96 ◽  
pp. 102856
Author(s):  
Marco Katzenberger ◽  
Helder Duarte ◽  
Rick Relyea ◽  
Juan Francisco Beltrán ◽  
Miguel Tejedo

Sign in / Sign up

Export Citation Format

Share Document