scholarly journals PAIRING OF SUPERMASSIVE BLACK HOLES IN UNEQUAL-MASS GALAXY MERGERS

2009 ◽  
Vol 696 (1) ◽  
pp. L89-L92 ◽  
Author(s):  
Simone Callegari ◽  
Lucio Mayer ◽  
Stelios Kazantzidis ◽  
Monica Colpi ◽  
Fabio Governato ◽  
...  
1999 ◽  
Vol 186 ◽  
pp. 307-310
Author(s):  
Y. Taniguchi ◽  
Y. Shioya ◽  
T. Murayama ◽  
K. Wada

A unified formation mechanism of nuclear starbursts is presented; all the nuclear starbursts are triggered by binary supermassive black holes made in the final phase of galaxy mergers. Minor mergers cause both nuclear starbursts and hot-spot nuclei while major mergers cause (ultra) luminous infrared galaxies. We discuss the case of Arp 220 in detail.


2015 ◽  
Vol 810 (1) ◽  
pp. 51 ◽  
Author(s):  
Lucio Mayer ◽  
Davide Fiacconi ◽  
Silvia Bonoli ◽  
Thomas Quinn ◽  
Rok Roškar ◽  
...  

Nature ◽  
2010 ◽  
Vol 466 (7310) ◽  
pp. 1082-1084 ◽  
Author(s):  
L. Mayer ◽  
S. Kazantzidis ◽  
A. Escala ◽  
S. Callegari

2021 ◽  
pp. 1-16
Author(s):  
A. Kovacevic

Gravitational waves (GW) in the nano-Hz domain are expected to be radiated by close-binaries of supermassive black holes (CB-SMBHs; components bound in a Keplerian binary at mutual distance less than ~ 0.1 pc), which are relicts of galaxy mergers and anticipated to be measured via the Pulsar Timing Array (PTA) technique. The challenge of present CB-SMBH investigations is that their signatures are elusive and not easily disentangled from a single SMBH. PTAs will typically have a glimpse of an early portion of the binary inspiral to catch the frequency evolution of the binary only with sufficiently high mass and initially high eccentricity. Thus, we have to make use of electromagnetic observations to determine orbital parameters of CB-SMBHs and test nano-Hz GW properties. The 2D reverberation mapping (RM) is a powerful tool for probing kinematics and geometry of ionized gas in the SMBHs (single or binary) vicinity, yet it can lose information due to projection on the line of sight of the observer. Nevertheless, spectroastrometry with AMBER, GRAVITY, and successors can provide an independent measurement of the emitting region's size, geometry, and kinematics. These two techniques combined can resolve CB-SMBHs. In this review, we focus on RM and spectroastrometry observational signatures of CB-SMBHs with non-zero eccentricity from recent simulations with particular attention to recent developments and open issues.


2018 ◽  
Vol 615 ◽  
pp. A71 ◽  
Author(s):  
Fazeel Mahmood Khan ◽  
Peter Berczik ◽  
Andreas Just

Aims. The evolution of supermassive black holes (SMBHs) initially embedded in the centres of merging galaxies realised with a stellar mass function (SMF) is studied from the onset of galaxy mergers until coalescence. Coalescence times of SMBH binaries are of great importance for black hole evolution and gravitational wave detection studies. Methods. We performed direct N-body simulations using the highly efficient and massively parallel phi-GRAPE+GPU code capable of running on high-performance computer clusters supported by graphic processing units (GPUs). Post-Newtonian terms up to order 3.5 are used to drive the SMBH binary evolution in the relativistic regime. We performed a large set of simulations with three different slopes of the central stellar cusp and different random seeds. The impact of a SMF on the hardening rate and the coalescence time is investigated. Results. We find that SMBH binaries coalesce well within one billion years when our models are scaled to galaxies with a steep cusp at low redshift. Here higher central densities provide a larger supply of stars to efficiently extract energy from the SMBH binary orbit and shrink it to the phase where gravitational wave (GW) emission becomes dominant, leading to the coalescence of the SMBHs. Mergers of models with shallow cusps that are representative of giant elliptical galaxies having central cores result in less efficient extraction of the binary’s orbital energy, due to the lower stellar densities in the centre. However, high values of eccentricity witnessed for SMBH binaries in such galaxy mergers ensure that the GW emission dominated phase sets in earlier at larger values of the semi-major axis. This helps to compensate for the less efficient energy extraction during the phase dominated by stellar encounters resulting in mergers of SMBHs in about 1 Gyr after the formation of the binary. Additionally, we witness mass segregation in the merger remnant resulting in enhanced SMBH binary hardening rates. We show that at least the final phase of the merger in cuspy low-mass galaxies would be observable with the GW detector eLISA.


Author(s):  
C. Ricci ◽  
F. E. Bauer ◽  
E. Treister ◽  
K. Schawinski ◽  
G. C. Privon ◽  
...  

2014 ◽  
Vol 10 (S312) ◽  
pp. 82-85
Author(s):  
Peter Berczik ◽  
Long Wang ◽  
Keigo Nitadori ◽  
Rainer Spurzem

AbstractIn this work we study the stellar-dynamical hardening of unequal mass massive black hole (MBH) binaries in the central regions of galactic nuclei. We present a comprehensive set of direct N-body simulations of the problem, varying both the total mass and the mass ratio of the MBH binary. Our initial model starts as an axisymmetric, rotating galactic nucleus, to describe the situation right after the galaxies have merged, but the black holes are still unbound to each other. We confirm that results presented in earlier works (Berczik et al. 2006; Khan et al. 2013; Wang et al. 2014) about the solution of the “last parsec problem” (sufficiently fast black hole coalescence for black hole growth in cosmological context) are robust for both for the case of unequal black hole masses and large particle numbers. The MBH binary hardening rate depends on the reduced mass ratio through a single parameter function, which quantitatively quite well agrees with standard 3 body scattering theory (see e.g., Hills 1983). Based on our results we conclude that MBH binaries at high redshifts are expected to merge with a factor of ~ 2 more efficiently, which is important to determine the possible overall gravitational wave signals. However, we have not yet fully covered all the possible parameter space, in particular with respect to the preceding of the galaxy mergers, which may lead to a wider variety of initial models, such as initially more oblate and / or even significantly triaxial galactic nuclei. Our N-body simulations were carried out on a new special supercomputers using the hardware acceleration with graphic processing units (GPUs).


2009 ◽  
Vol 698 (1) ◽  
pp. 956-965 ◽  
Author(s):  
Julia M. Comerford ◽  
Brian F. Gerke ◽  
Jeffrey A. Newman ◽  
Marc Davis ◽  
Renbin Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document