scholarly journals DIRECT FORMATION OF SUPERMASSIVE BLACK HOLES IN METAL-ENRICHED GAS AT THE HEART OF HIGH-REDSHIFT GALAXY MERGERS

2015 ◽  
Vol 810 (1) ◽  
pp. 51 ◽  
Author(s):  
Lucio Mayer ◽  
Davide Fiacconi ◽  
Silvia Bonoli ◽  
Thomas Quinn ◽  
Rok Roškar ◽  
...  
Nature ◽  
2010 ◽  
Vol 466 (7310) ◽  
pp. 1082-1084 ◽  
Author(s):  
L. Mayer ◽  
S. Kazantzidis ◽  
A. Escala ◽  
S. Callegari

2015 ◽  
Vol 11 (A29B) ◽  
pp. 292-298 ◽  
Author(s):  
S. Komossa ◽  
J. G. Baker ◽  
F. K. Liu

AbstractThe study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.


1999 ◽  
Vol 186 ◽  
pp. 307-310
Author(s):  
Y. Taniguchi ◽  
Y. Shioya ◽  
T. Murayama ◽  
K. Wada

A unified formation mechanism of nuclear starbursts is presented; all the nuclear starbursts are triggered by binary supermassive black holes made in the final phase of galaxy mergers. Minor mergers cause both nuclear starbursts and hot-spot nuclei while major mergers cause (ultra) luminous infrared galaxies. We discuss the case of Arp 220 in detail.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Giuseppe Lodato

I review the recent progresses that have been obtained, especially through the use of high-resolution numerical simulations, on the dynamics of self-gravitating accretion discs. A coherent picture is emerging, where the disc dynamics is controlled by a small number of parameters that determine whether the disc is stable or unstable, whether the instability saturates in a self-regulated state or runs away into fragmentation, and whether the dynamics is local or global. I then apply these concepts to the case of AGN discs, discussing the implications of such evolution on the feeding of supermassive black holes. Nonfragmenting, self-gravitating discs appear to play a fundamental role in the process of formation of massive black hole seeds at high redshift ( 10–15) through direct gas collapse. On the other hand, the different cooling properties of the interstellar gas at low redshifts determine a radically different behaviour for the outskirts of the accretion discs feeding typical AGNs. Here the situation is much less clear from a theoretical point of view, and while several observational clues point to the important role of massive discs at a distance of roughly a parsec from their central black hole, their dynamics is still under debate.


2014 ◽  
Vol 782 (2) ◽  
pp. 69 ◽  
Author(s):  
A. Lapi ◽  
S. Raimundo ◽  
R. Aversa ◽  
Z.-Y. Cai ◽  
M. Negrello ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 265
Author(s):  
Masahiro Morikawa

Many supermassive black holes (SMBH) of mass 106∼9M⊙ are observed at the center of each galaxy even in the high redshift (z≈7) Universe. To explain the early formation and the common existence of SMBH, we previously proposed the SMBH formation scenario by the gravitational collapse of the coherent dark matter (DM) composed from the Bose-Einstein Condensed (BEC) objects. A difficult problem in this scenario is the inevitable angular momentum which prevents the collapse of BEC. To overcome this difficulty, in this paper, we consider the very early Universe when the BEC-DM acquires its proper angular momentum by the tidal torque mechanism. The balance of the density evolution and the acquisition of the angular momentum determines the mass of the SMBH as well as the mass ratio of BH and the surrounding dark halo (DH). This ratio is calculated as MBH/MDH≈10−3∼−5(Mtot/1012M⊙)−1/2 assuming simple density profiles of the initial DM cloud. This result turns out to be consistent with the observations at z≈0 and z≈6, although the data scatter is large. Thus, the angular momentum determines the separation of black and dark, i.e., SMBH and DH, in the original DM cloud.


Sign in / Sign up

Export Citation Format

Share Document