scholarly journals Investigating close binary supermassive black holes at high angular resolution

2021 ◽  
pp. 1-16
Author(s):  
A. Kovacevic

Gravitational waves (GW) in the nano-Hz domain are expected to be radiated by close-binaries of supermassive black holes (CB-SMBHs; components bound in a Keplerian binary at mutual distance less than ~ 0.1 pc), which are relicts of galaxy mergers and anticipated to be measured via the Pulsar Timing Array (PTA) technique. The challenge of present CB-SMBH investigations is that their signatures are elusive and not easily disentangled from a single SMBH. PTAs will typically have a glimpse of an early portion of the binary inspiral to catch the frequency evolution of the binary only with sufficiently high mass and initially high eccentricity. Thus, we have to make use of electromagnetic observations to determine orbital parameters of CB-SMBHs and test nano-Hz GW properties. The 2D reverberation mapping (RM) is a powerful tool for probing kinematics and geometry of ionized gas in the SMBHs (single or binary) vicinity, yet it can lose information due to projection on the line of sight of the observer. Nevertheless, spectroastrometry with AMBER, GRAVITY, and successors can provide an independent measurement of the emitting region's size, geometry, and kinematics. These two techniques combined can resolve CB-SMBHs. In this review, we focus on RM and spectroastrometry observational signatures of CB-SMBHs with non-zero eccentricity from recent simulations with particular attention to recent developments and open issues.

2020 ◽  
Vol 635 ◽  
pp. A1 ◽  
Author(s):  
Andjelka B. Kovačević ◽  
Jian-Min Wang ◽  
Luka Č. Popović

Context. An unresolved region in the relative vicinity of the event horizon of a supermassive black holes (SMBH) in active galactic nuclei (AGN) radiates strongly variable optical continuum and broad-line emission flux. These fluxes can be processed into two-dimensional transfer functions (2DTF) of material flows that encrypt various information about these unresolved structures. An intense search for kinematic signatures of reverberation mapping of close binary SMBH (SMBBH) is currently ongoing. Aims. Elliptical SMBBH systems (i.e. both orbits and disc-like broad-line regions (BLR) are elliptic) have not been assessed in 2DTF studies. We aim to numerically infer such a 2DTF because the geometry of the unresolved region is imprinted on their optical emission. Through this, we determine their specific kinematical signatures. Methods. We simulated the geometry and kinematics of SMBBH whose components are on elliptical orbits. Each SMBH had a disc-like elliptical BLR. The SMBHs were active and orbited each other tightly at a subparsec distance. Results. Here we calculate for the first time 2DTF, as defined in the velocity-time delay plane, for several elliptical configurations of SMBBH orbits and their BLRs. We find that these very complex configurations are clearly resolved in maps. These results are distinct from those obtained from circular and disc-wind geometry. We calculate the expected line variability for all SMBBH configurations. We show that the line shapes are influenced by the orbital phase of the SMBBH. Some line profiles resemble observed profiles, but they can also be much deformed to look like those from the disc-wind model. Conclusions. First, our results imply that using our 2DTF, we can detect and quantify kinematic signatures of elliptical SMBBH. Second, the calculated expected line profiles share some intriguing similarities with observed profiles, but also with some profiles that are synthesised in disc-wind models. To overcome the non-uniqueness of the spectral line shapes as markers of SMBBH, they must be accompanied with 2DTF.


2020 ◽  
Vol 644 ◽  
pp. A88
Author(s):  
Andjelka B. Kovačević ◽  
Yu-Yang Songsheng ◽  
Jian-Min Wang ◽  
Luka Č. Popović

Context. Obtaining detections of electromagnetic signatures from the close binaries of supermassive black holes (CB-SMBH) is still a great observational challenge. The Very Large Telescope Interferometer (VLTI) and the Extremely Large Telescope (ELT) will serve as a robust astrophysics suite offering the opportunity to probe the structure and dynamics of CB-SMBH at a high spectral and angular resolution. Aims. Here, we explore and illustrate the application of differential interferometry on unresolved CB-SMBH systems in elliptical orbital configurations. We also investigate certain peculiarities of interferometry signals for a single SMBH with clouds in elliptical orbital motion. Methods. Photocentre displacements between each SMBH and the regions in their disc-like broad line regions (BLR) appear as small interferometric differential phase variability. To investigate the application of interferometric phases for the detection of CB-SMBH systems, we simulated a series of differential interferometry signatures, based on our model comprising ensembles of clouds surrounding each supermassive black hole in a CB-SMBH. By setting the model to the parameters of a single SMBH with elliptical cloud motion, we also calculated a series of differential interferometry observables for this case. Results. We found various deviations from the canonical S-shape of the CB-SMBH phase profile for elliptically configured CB-SMBH systems. The amplitude and specific shape of the interferometry observables depend on the orbital configurations of the CB-SMBH system. We get distinctive results when considering anti-aligned angular momenta of cloud orbits with regard to the total CB-SMBH angular momentum. We also show that their velocity distributions differ from the aligned cloud orbital motion. Some simulated spectral lines from our model closely resemble observations from the Paα line obtained from near-infrared AGN surveys. We found differences between the “zoo” of differential phases of single SMBH and CB-SMBH systems. The “zoo” of differential phases for a single SMBH take a deformed S shape. We also show how their differential phase shape, amplitude, and slope evolve with various sets of cloud orbital parameters and the observer’s position. Conclusions. We calculate an extensive atlas of the interferometric observables, revealing distinctive signatures for the elliptical configuration CB-SMBH. We also provide an interferometry atlas for the case of a single SMBH with clouds with an elliptical motion, which differs from those of a CB-SMBH. These maps can be useful for extracting exceptional features of the BLR structure from future high-resolution observations of CB-SMBH systems, but also of a single SMBH with clouds in an elliptical orbital setup.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


1999 ◽  
Vol 193 ◽  
pp. 703-715
Author(s):  
Timothy M. Heckman

I review the evidence for a possible connection between AGN and starbursts and assess the energetic role of massive stars in the AGN phenomenon. My particular focus is on UV spectroscopy, since this is the energetically dominant spectral regime for the hot high-mass stars that power starbursts, and contains a wealth of spectral features for diagnosing the presence of such stars. I also review the non-stellar sources of UV line and continuum emission in AGN, including scattered or reprocessed light from the ‘central engine’. Spectroscopy directly shows that hot stars provide most of the UV light in about half of the brightest type 2 Seyfert nuclei and UV-bright LINERS. The population of hot stars in these AGN is typically heavily extinct and reddened by dust with A(1600Å) ≃ 2–4 mag. The implied intrinsic UV luminosities of the starburst range from 108 to 109 L⊙ in the LINERS to 1010 to 1011 L⊙ in the type 2 Seyferts. Massive stars play an energetically significant role in many AGN, but the causal or evolution connection between starbursts and AGN is unclear. I also consider the energetics of massive stars and accreting supermassive black holes from a global, cosmic perspective. Recent inventories in the local universe of the cumulative effect of nuclear burning (metal production) and of AGN-fueling (compact dark objects in galactic nuclei) imply that accretion onto supermassive black holes may have produced as much radiant energy as massive stars over the history of the universe.


1999 ◽  
Vol 186 ◽  
pp. 307-310
Author(s):  
Y. Taniguchi ◽  
Y. Shioya ◽  
T. Murayama ◽  
K. Wada

A unified formation mechanism of nuclear starbursts is presented; all the nuclear starbursts are triggered by binary supermassive black holes made in the final phase of galaxy mergers. Minor mergers cause both nuclear starbursts and hot-spot nuclei while major mergers cause (ultra) luminous infrared galaxies. We discuss the case of Arp 220 in detail.


1989 ◽  
Vol 113 ◽  
pp. 185-194
Author(s):  
J. S. Gallagher

AbstractThe evolution of massive close binary stars inevitably involves mass exchange between the two stellar components as well as mass loss from the system. A combination of these two processes could produce the stellar wind-modulated behavior seen in LB Vs. The possibility that LBVs are powered by accretion is examined, and does not appear to be a satisfactory general model. Instead, identification of LBVs with close binaries in high mass-loss rate or common envelope evolutionary phases shows promise.


Sign in / Sign up

Export Citation Format

Share Document