scholarly journals X-RAY AND OPTICAL OBSERVATIONS OF THE UNIQUE BINARY SYSTEM HD 49798/RX J0648.0-4418

2011 ◽  
Vol 737 (2) ◽  
pp. 51 ◽  
Author(s):  
S. Mereghetti ◽  
N. La Palombara ◽  
A. Tiengo ◽  
F. Pizzolato ◽  
P. Esposito ◽  
...  
2020 ◽  
Vol 497 (1) ◽  
pp. 648-655
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
S Mc Keague ◽  
B van Soelen ◽  
J P Marais ◽  
...  

ABSTRACT PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around an O9.5Ve star, LS 2883, with a period of ∼3.4 yr. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad-band emission in the radio, X-rays, GeV, and TeV domains. While the radio, X-ray, and TeV light curves show rather similar behaviour, the GeV light curve appears very different with a huge outburst about a month after a periastron. The energy release during this outburst seems to significantly exceed the spin-down luminosity of the pulsar and both the GeV light curve and the energy release vary from one orbit to the next. In this paper, we present for the first time the results of optical observations of the system in 2017, and also reanalyse the available X-ray and GeV data. We present a new model in which the GeV data are explained as a combination of the bremsstrahlung and inverse Compton emission from the unshocked and weakly shocked electrons of the pulsar wind. The X-ray and TeV emission is produced by synchrotron and inverse Compton emission of energetic electrons accelerated on a strong shock arising due to stellar/pulsar winds collision. The brightness of the GeV flare is explained in our model as a beaming effect of the energy released in a cone oriented, during the time of the flare, in the direction of the observer.


Author(s):  
J A Toalá ◽  
G Rubio ◽  
E Santamaría ◽  
M A Guerrero ◽  
S Estrada-Dorado ◽  
...  

Abstract We present the analysis of XMM-Newton European Photon Imaging Camera (EPIC) observations of the nova shell IPHASX J210204.7+471015. We detect X-ray emission from the progenitor binary star with properties that resemble those of underluminous intermediate polars such as DQ Her: an X-ray-emitting plasma with temperature of TX = (6.4 ± 3.1) × 106 K, a non-thermal X-ray component, and an estimated X-ray luminosity of LX = 1030 erg s−1. Time series analyses unveil the presence of two periods, the dominant with a period of 2.9 ± 0.2 hr, which might be attributed to the spin of the white dwarf, and a secondary of 4.5 ± 0.6 hr that is in line with the orbital period of the binary system derived from optical observations. We do not detect extended X-ray emission as in other nova shells probably due to its relatively old age (130–170 yr) or to its asymmetric disrupted morphology which is suggestive of explosion scenarios different to the symmetric ones assumed in available numerical simulations of nova explosions.


1982 ◽  
Vol 4 (4) ◽  
pp. 425-428
Author(s):  
A.J. Pickles ◽  
N. Visvanathan

The soft X-ray source HO 139-68 was originally detected with the low energy detectors of the HEAO A-2 experiment, and confirmed by later IPC observations (Agarwal et al. 1981). The X-ray observations show flux variations in the 0.15 – 0.4 keV band of a factor of two, or timescales of a few hours, with evidence for short time-scale flickering. Following communication of the source position to us by Agarwal and Riegler, we obtained time-resolved optical spectrophotometry of a star close to the X-ray position, using the IDPCA on the MSO 1.9m telescope. The spectrophotometry and later polarisation observations confirm the optical identification and that the source is an AM-Herculis type binary system, with a late type dwarf secondary overflowing its Roche lobe in a magnetically constrained funnel onto a magnetic white dwarf (WD) primary (Visvanathan and Pickles 1982).


2018 ◽  
Vol 14 (S346) ◽  
pp. 252-254
Author(s):  
D. Koçak ◽  
T. İçli ◽  
K. Yakut

AbstractWe presented long-term optical observations of the high mass X-ray binary system SS 433 (V1343 Aql) with a black hole component. New observations have been obtained by using the 0.6m telescope at the TÜBİTAK National Observatory (TUG) in B, V, R and I filters. We aim to investigate the long-term photometric behavior of the system.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


1994 ◽  
Vol 268 (2) ◽  
pp. 430-436 ◽  
Author(s):  
S. Johnston ◽  
R. N. Manchester ◽  
A. G. Lyne ◽  
L. Nicastro ◽  
J. Spyromilio

2011 ◽  
Vol 7 (S282) ◽  
pp. 201-202 ◽  
Author(s):  
O. I. Sharova ◽  
M. I. Agafonov ◽  
E. A. Karitskaya ◽  
N. G. Bochkarev ◽  
S. V. Zharikov ◽  
...  

AbstractThe 2D and 3D Doppler tomograms of X-ray binary system Cyg X-1 (V1357 Cyg) were reconstructed from spectral data for the line HeII 4686Å obtained with 2-m telescope of the Peak Terskol Observatory (Russia) and 2.1-m telescope of the Mexican National Observatory in June, 2007. Information about gas motions outside the orbital plane, using all of the three velocity components Vx, Vy, Vz, was obtained for the first time. The tomographic reconstruction was carried out for the system inclination angle of 45°. The equal resolution (50 × 50 × 50 km/s) is realized in this case, in the orbital plane (Vx, Vy) and also in the perpendicular direction Vz. The checkout tomograms were realized also for the inclination angle of 40° because of the angle uncertainty. Two versions of the result showed no qualitative discrepancy. Details of the structures revealed by the 3D Doppler tomogram were analyzed.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Mohammed Hassan ◽  
Rfi Rafiuddin

Samples of general formula 4AgI-(1-)-2CuI, , have been prepared and investigated by XRD, DSC, and temperature-dependent conductivity studies. X-ray diffractograms showed the presence of binary system consisting of AgI and in the sample . Cu-substituted samples showed very similar diffractograms to that of the pure compound which indicates that no effect for the substitution on the nature of the binary system. DSC curves showed the presence of phase transition whose temperature increased with ratio in the system. Ionic conductivity measurements confirmed the occurrence of the phase transition and showed that the high temperature phase is superionic conducting, whose conductivity increases with the increasing amount in the system.


1981 ◽  
Vol 30 (1-4) ◽  
pp. 365-366
Author(s):  
C. Chevalier ◽  
S. A. Ilovaisky

Sign in / Sign up

Export Citation Format

Share Document