New insight into the origin of the GeV flare in the binary system PSR B1259-63/LS 2883 from the 2017 periastron passage

2020 ◽  
Vol 497 (1) ◽  
pp. 648-655
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
S Mc Keague ◽  
B van Soelen ◽  
J P Marais ◽  
...  

ABSTRACT PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around an O9.5Ve star, LS 2883, with a period of ∼3.4 yr. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad-band emission in the radio, X-rays, GeV, and TeV domains. While the radio, X-ray, and TeV light curves show rather similar behaviour, the GeV light curve appears very different with a huge outburst about a month after a periastron. The energy release during this outburst seems to significantly exceed the spin-down luminosity of the pulsar and both the GeV light curve and the energy release vary from one orbit to the next. In this paper, we present for the first time the results of optical observations of the system in 2017, and also reanalyse the available X-ray and GeV data. We present a new model in which the GeV data are explained as a combination of the bremsstrahlung and inverse Compton emission from the unshocked and weakly shocked electrons of the pulsar wind. The X-ray and TeV emission is produced by synchrotron and inverse Compton emission of energetic electrons accelerated on a strong shock arising due to stellar/pulsar winds collision. The brightness of the GeV flare is explained in our model as a beaming effect of the energy released in a cone oriented, during the time of the flare, in the direction of the observer.

2004 ◽  
Vol 218 ◽  
pp. 219-220
Author(s):  
D. A. Leahy

LSI +61°303 outbursts are modeled as a pulsar wind nebula expanding inside the environment provided by the Be companion star's stellar wind and photon flux. A set of equations describing the system is developed and solved numerically for representative sets of parameters. Emission in X-rays through gamma-rays is due to inverse Compton emission from relativistic electrons around the pulsar. The radio emission is due to synchrotron emission of varying optical depth, which yields a varying spectral index. The peak of X-ray emission is near periastron and the peak of the radio emission is near apastron, due to reduced confining pressure on the relativistic electron cloud and its subsequent rapid expansion.


2017 ◽  
Vol 597 ◽  
pp. A75 ◽  
Author(s):  
C. Maitra ◽  
F. Acero ◽  
C. Venter

Aims. PSR J0855−4644 is a fast-spinning, energetic pulsar discovered at radio wavelengths near the south-eastern rim of the supernova remnant RX J0852.0−4622. A follow-up XMM-Newton observation revealed the X-ray counterpart of the pulsar and a slightly asymmetric pulsar wind nebula, which suggests possible jet structures. Lying at a distance d ≤ 900 pc, PSR J0855−4644 is a pulsar with one of the highest Ė/d2 from which no GeV γ-ray pulsations have been detected. With a dedicated Chandra observation we aim to further resolve the possible jet structures of the nebula and study the pulsar geometry to understand the lack of γ-ray pulsations. Methods. We performed detailed spatial modelling to constrain the geometry of the pulsar wind nebula and in particular the pulsar line of sight (observer angle) ζPSR, which is defined as the angle between the direction of the observer and the pulsar spin axis. We also performed geometric radio and γ-ray light-curve modelling using a hollow-cone radio beam model together with two-pole caustic and outer gap models to further constrain ζPSR and the magnetic obliquity α defined as the angle between the magnetic and spin axes of the pulsar. Results. The Chandra observation reveals that the compact XMM source, thought to be the X-ray pulsar, can be further resolved into a point source surrounded by an elongated axisymmetric nebula with a longitudinal extent of 10′′. The pulsar flux represents only ~1% of the XMM compact source, and its spectrum is well described by a blackbody of temperature kT = 0.2 keV, while the surrounding nebula has a much harder spectrum (Γ = 1.1 for a power-law model). Assuming the origin of the extended emission is a double torus yields ζPSR = 32.5° ± 4.3°. The detection of thermal X-rays from the pulsar may point to a low value of | ζ−α | if this emission originates from a heated polar cap. Independent constraints from geometric light-curve modelling yield α ≲ 55° and ζ ≲ 55°, and 10° ≲ | ζ−α | ≲ 30°. A χ2 fit to the radio light curve yields a best fit at (α,ζPSR) = (22°,8°), with an alternative fit at (α,ζPSR) = (9°,25°) within 3σ. The lack of non-thermal X-ray emission from the pulsar further supports low values for α and ζ under the assumption that X-rays and γ-rays are generated in the same region of the pulsar magnetosphere. Such a geometry would explain, in the standard caustic pulsar model picture, the radio-loud and γ-ray-quiet behaviour of this high Ė/d2 pulsar.


2020 ◽  
Vol 498 (1) ◽  
pp. L35-L39 ◽  
Author(s):  
S Komossa ◽  
D Grupe ◽  
M L Parker ◽  
M J Valtonen ◽  
J L Gómez ◽  
...  

ABSTRACT We report detection of a very bright X-ray–UV–optical outburst of OJ 287 in 2020 April–June, the second brightest since the beginning of our Swift multiyear monitoring in late 2015. It is shown that the outburst is predominantly powered by jet emission. Optical–UV–X-rays are closely correlated, and the low-energy part of the XMM–Newton spectrum displays an exceptionally soft emission component consistent with a synchrotron origin. A much harder X-ray power-law component (Γx = 2.4, still relatively steep when compared to expectations from inverse Compton models) is detected out to 70 keV by NuSTAR. We find evidence for reprocessing around the Fe region, consistent with an absorption line. If confirmed, it implies matter in outflow at ∼0.1c. The multiyear Swift light curve shows multiple episodes of flaring or dipping with a total amplitude of variability of a factor of 10 in X-rays, and 15 in the optical–UV. The 2020 outburst observations are consistent with an after-flare predicted by the binary black hole model of OJ 287, where the disc impact of the secondary black hole triggers time-delayed accretion and jet activity of the primary black hole.


2020 ◽  
Vol 636 ◽  
pp. A109 ◽  
Author(s):  
E. Mossoux ◽  
J. M. Pittard ◽  
G. Rauw ◽  
Y. Nazé

Aims. Cyg OB2 #8A is a massive O-type binary displaying strong non-thermal radio emission. Owing to the compactness of this binary, emission of non-thermal X-ray photons via inverse Compton scattering is expected. Methods. We first revised the orbital solution for Cyg OB2 #8A using new optical spectra. We then reduced and analysed X-ray spectra obtained with XMM-Newton, Swift, INTEGRAL, and NuSTAR. Results. The analysis of the XMM-Newton and Swift data allows us to better characterise the X-ray emission from the stellar winds and colliding winds region at energies below 10 keV. We confirm the variation of the broad-band light curve of Cyg OB2 #8A along the orbit with, for the first time, the observation of the maximum emission around phase 0.8. The minimum ratio of the X-ray to bolometric flux of Cyg OB2 #8A remains well above the level expected for single O-type stars, indicating that the colliding wind region is not disrupted during the periastron passage. The analysis of the full set of publicly available INTEGRAL observations allows us to refine the upper limit on the non-thermal X-ray flux of the Cyg OB2 region between 20 and 200 keV. Two NuSTAR observations (phases 0.028 and 0.085) allow us to study the Cyg OB2 #8A spectrum up to 30 keV. These data do not provide evidence of the presence of non-thermal X-rays, but bring more stringent constraints on the flux of a putative non-thermal component. Finally, we computed, thanks to a new dedicated model, the anisotropic inverse Compton emission generated in the wind shock region. The theoretical non-thermal emission appears to be compatible with observational limits and the kinetic luminosity computed from these models is in good agreement with the unabsorbed flux observed below 10 keV.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


2014 ◽  
Vol 21 (6) ◽  
pp. 1327-1332 ◽  
Author(s):  
Toshiharu Fujii ◽  
Naoto Fukuyama ◽  
Chiharu Tanaka ◽  
Yoshimori Ikeya ◽  
Yoshiro Shinozaki ◽  
...  

The fundamental performance of microangiography has been evaluated using the S-band linac-based inverse-Compton scattering X-ray (iCSX) method to determine how many photons would be required to apply iCSX to human microangiography. ICSX is characterized by its quasi-monochromatic nature and small focus size which are fundamental requirements for microangiography. However, the current iCSX source does not have sufficient flux for microangiography in clinical settings. It was determined whether S-band compact linac-based iCSX can visualize small vessels of excised animal organs, and the amount of X-ray photons required for real time microangiography in clinical settings was estimated. The iCSX coupled with a high-gain avalanche rushing amorphous photoconductor camera could visualize a resolution chart with only a single iCSX pulse of ∼3 ps duration; the resolution was estimated to be ∼500 µm. The iCSX coupled with an X-ray cooled charge-coupled device image sensor camera visualized seventh-order vascular branches (80 µm in diameter) of a rabbit ear by accumulating the images for 5 and 30 min, corresponding to irradiation of 3000 and 18000 iCSX pulses, respectively. The S-band linac-based iCSX visualized microvessels by accumulating the images. An iCSX source with a photon number of 3.6 × 103–5.4 × 104times greater than that used in this study may enable visualizing microvessels of human fingertips even in clinical settings.


2015 ◽  
Vol 48 (2) ◽  
pp. 558-564 ◽  
Author(s):  
Giacomo Resta ◽  
Boris Khaykovich ◽  
David Moncton

A comprehensive description and ray-tracing simulations are presented for symmetric nested Kirkpatrick–Baez (KB) mirrors, commonly used at synchrotrons and in commercial X-ray sources. This paper introduces an analytical procedure for determining the proper orientation between the two surfaces composing the nested KB optics. This procedure has been used to design and simulate collimating optics for a hard-X-ray inverse Compton scattering source. The resulting optical device is composed of two 12 cm-long parabolic surfaces coated with a laterally graded multilayer and is capable of collimating a 12 keV beam with a divergence of 5 mrad (FWHM) by a factor of ∼250. A description of the ray-tracing software that was developed to simulate the graded multilayer mirrors is included.


2006 ◽  
Vol 24 (7) ◽  
pp. 1969-1976 ◽  
Author(s):  
R. Bučík ◽  
K. Kudela ◽  
S. N. Kuznetsov

Abstract. Preliminary examination of October-December 2002 SONG (SOlar Neutron and Gamma rays) data aboard the Russian CORONAS-F (Complex Orbital Near-Earth Observations of the Activity of the Sun) low-altitude satellite has revealed many X-ray enhanced emissions (30–500 keV) in the slot region (L ~ 2–3) between the Earth's radiation belts. In one case, CORONAS-F data were analyzed when the intense hard X-ray emissions were seen westward of the South Atlantic Anomaly in a rather wide L shell range from 1.7 to 2.6. Enhanced fluxes observed on day 316 (12 November) were most likely associated with a Major Severe Weather Outbreak in Eastern USA, producing extensive lightning flashes, as was documented by simultaneous optical observations from space. We propose that whistler mode signals from these lightning discharges cause precipitation of energetic electrons from terrestrial trapped radiation belts, which, in turn, produce atmospheric X-rays in the Southern Hemisphere.


1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


Sign in / Sign up

Export Citation Format

Share Document