nova shells
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
J A Toalá ◽  
G Rubio ◽  
E Santamaría ◽  
M A Guerrero ◽  
S Estrada-Dorado ◽  
...  

Abstract We present the analysis of XMM-Newton European Photon Imaging Camera (EPIC) observations of the nova shell IPHASX J210204.7+471015. We detect X-ray emission from the progenitor binary star with properties that resemble those of underluminous intermediate polars such as DQ Her: an X-ray-emitting plasma with temperature of TX = (6.4 ± 3.1) × 106 K, a non-thermal X-ray component, and an estimated X-ray luminosity of LX = 1030 erg s−1. Time series analyses unveil the presence of two periods, the dominant with a period of 2.9 ± 0.2 hr, which might be attributed to the spin of the white dwarf, and a secondary of 4.5 ± 0.6 hr that is in line with the orbital period of the binary system derived from optical observations. We do not detect extended X-ray emission as in other nova shells probably due to its relatively old age (130–170 yr) or to its asymmetric disrupted morphology which is suggestive of explosion scenarios different to the symmetric ones assumed in available numerical simulations of nova explosions.


2021 ◽  
Vol 501 (2) ◽  
pp. 1951-1969
Author(s):  
N Castro Segura ◽  
C Knigge ◽  
J A Acosta-Pulido ◽  
D Altamirano ◽  
S del Palacio ◽  
...  

ABSTRACT V341 Ara was recently recognized as one of the closest (d ≃ 150 pc) and brightest (V ≃ 10) nova-like cataclysmic variables. This unique system is surrounded by a bright emission nebula, likely to be the remnant of a recent nova eruption. Embedded within this nebula is a prominent bow shock, where the system’s accretion disc wind runs into its own nova shell. In order to establish its fundamental properties, we present the first comprehensive multiwavelength study of the system. Long-term photometry reveals quasi-periodic, super-orbital variations with a characteristic time-scale of 10–16 d and typical amplitude of ≃1 mag. High-cadence photometry from theTransiting Exoplanet Survey Satellite (TESS) reveals for the first time both the orbital period and a ‘negative superhump’ period. The latter is usually interpreted as the signature of a tilted accretion disc. We propose a recently developed disc instability model as a plausible explanation for the photometric behaviour. In our spectroscopic data, we clearly detect antiphased absorption and emission-line components. Their radial velocities suggest a high mass ratio, which in turn implies an unusually low white-dwarf mass. We also constrain the wind mass-loss rate of the system from the spatially resolved [O iii] emission produced in the bow shock; this can be used to test and calibrate accretion disc wind models. We suggest a possible association between V341 Ara and a ‘guest star’ mentioned in Chinese historical records in AD 1240. If this marks the date of the system’s nova eruption, V341 Ara would be the oldest recovered nova of its class and an excellent laboratory for testing nova theory.


2020 ◽  
Vol 499 (2) ◽  
pp. 2959-2976
Author(s):  
E J Harvey ◽  
M P Redman ◽  
P Boumis ◽  
S Akras ◽  
K Fitzgerald ◽  
...  

ABSTRACT A classical nova is an eruption on the surface of a white dwarf in an accreting binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell. The shaping mechanisms of nova shells are probes of the processes that take place at energy scales between planetary nebulae and supernova remnants. We report on the discovery of nova shells surrounding the post-nova systems V4362 Sagittarii (1994) and more limited observations of DO Aquilae (1925). Distance measurements of $0.5\substack{+1.4 \\ -0.2}$ kpc for V4362 Sgr and 6.7 ± 3.5 kpc for DO Aql are found based on the expansion parallax method. The growth rates are measured to be 0.07 arcsec yr−1 for DO Aql and 0.32 arcsec yr−1 for V4362 Sgr. A preliminary investigation into the ionization structure of the nova shell associated with V4362 Sgr is presented. The observed ionization structure of nova shells depends strongly on their morphology and the orientation of the central component towards the observer. X-ray, IR, and UV observations as well as optical integral field unit spectroscopy are required to better understand these interesting objects.


2020 ◽  
Vol 641 ◽  
pp. A122
Author(s):  
C. Tappert ◽  
N. Vogt ◽  
A. Ederoclite ◽  
L. Schmidtobreick ◽  
M. Vučković ◽  
...  

Over the last decade, nova shells have been discovered around a small number of cataclysmic variables that had not been known to be post-novae, while other searches around much larger samples have been mostly unsuccessful. This raises the question about how long such shells are detectable after the eruption and whether this time limit depends on the characteristics of the nova. So far, there has been only one comprehensive study of the luminosity evolution of nova shells, undertaken almost two decades ago. Here, we present a re-analysis of the Hα and [O III] flux data from that study, determining the luminosities while also taking into account newly available distances and extinction values, and including additional luminosity data of “ancient” nova shells. We compare the long-term behaviour with respect to nova speed class and light curve type. We find that, in general, the luminosity as a function of time can be described as consisting of three phases: an initial shallow logarithmic decline or constant behaviour, followed by a logarithmic main decline phase, with a possible return to a shallow decline or constancy at very late stages. The luminosity evolution in the first two phases is likely to be dominated by the expansion of the shell and the corresponding changes in volume and density, while for the older nova shells, the interaction with the interstellar medium comes into play. The slope of the main decline is very similar for almost all groups for a given emission line, but it is significantly steeper for [O III], compared to Hα, which we attribute to the more efficient cooling provided by the forbidden lines. The recurrent novae are among the notable exceptions, along with the plateau light curve type novae and the nova V838 Her. We speculate that this is due to the presence of denser material, possibly in the form of remnants from previous nova eruptions, or of planetary nebulae, which might also explain some of the brighter ancient nova shells. While there is no significant difference in the formal quality of the fits to the decline when grouped according to light curve type or to speed class, the former presents less systematic scatter. It is also found to be advantageous in identifying points that would otherwise distort the general behaviour. As a by-product of our study, we revised the identification of all novae included in our investigation with sources in the Gaia Data Release 2 catalogue.


2020 ◽  
Vol 892 (1) ◽  
pp. 60 ◽  
Author(s):  
E. Santamaría ◽  
M. A. Guerrero ◽  
G. Ramos-Larios ◽  
J. A. Toalá ◽  
L. Sabin ◽  
...  

2018 ◽  
Vol 619 ◽  
pp. A121 ◽  
Author(s):  
Jordi Casanova ◽  
Jordi José ◽  
Steven N. Shore

Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass main sequence star onto either a CO or ONe white dwarf. The material accumulates for 104–105 yr until ignition under degenerate conditions, resulting in a thermonuclear runaway. The nuclear energy released produces peak temperatures of ∼0.1–0.4 GK. During these events, 10−7−10−3 M⊙ enriched in intermediate-mass elements, with respect to solar abundances, are ejected into the interstellar medium. However, the origin of the large metallicity enhancements and the inhomogeneous distribution of chemical species observed in high-resolution spectra of ejected nova shells is not fully understood. Aims. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities that operate at the core-envelope interface can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, such multidimensional simulations have been performed for a small number of cases and much of the parameter space remains unexplored. Methods. We investigated the dredge-up, driven by Kelvin-Helmholtz instabilities, for white dwarf masses in the range 0.8–1.25 M⊙ and different core compositions, that is, CO-rich and ONe-rich substrates. We present a set of five numerical simulations performed in two dimensions aimed at analyzing the possible impact of the white dwarf mass, and composition, on the metallicity enhancement and explosion characteristics. Results. At the time we stop the simulations, we observe greater mixing (∼30% higher when measured in the same conditions) and more energetic outbursts for ONe-rich substrates than for CO-rich substrates and more massive white dwarfs.


2018 ◽  
Author(s):  
Claus Tappert ◽  
Eduardo Arancibia ◽  
Linda Schmidtobreick ◽  
Nikolaus Vogt ◽  
Alessandro Ederoclite ◽  
...  
Keyword(s):  

2018 ◽  
Vol 611 ◽  
pp. A3 ◽  
Author(s):  
E. J. Harvey ◽  
M. P. Redman ◽  
M. J. Darnley ◽  
S. C. Williams ◽  
A. Berdyugin ◽  
...  

Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii. Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve’s dust-dip. Methods. High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure. Results. Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm−3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called “nitrogen flaring” is more naturally explained as flaring of the O II multiplet (V1) from 4638–4696 Å, i.e. “oxygen flaring”. Conclusions. V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova’s evolving outflow. The high densities that were found early-on combined with knowledge of the system’s behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual “cusps” are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.


2016 ◽  
Vol 458 (2) ◽  
pp. 1833-1838 ◽  
Author(s):  
Ashley Pagnotta ◽  
David Zurek
Keyword(s):  

2015 ◽  
Vol 451 (3) ◽  
pp. 2863-2876 ◽  
Author(s):  
D. I. Sahman ◽  
V. S. Dhillon ◽  
C. Knigge ◽  
T. R. Marsh

Sign in / Sign up

Export Citation Format

Share Document