scholarly journals DIFFERENTIAL ROTATION IN MAGNETIZED AND NON-MAGNETIZED STARS

2015 ◽  
Vol 806 (1) ◽  
pp. 10 ◽  
Author(s):  
Jun Mabuchi ◽  
Youhei Masada ◽  
Akira Kageyama
2019 ◽  
Vol 57 (6) ◽  
pp. 407-412
Author(s):  
V. N. Obridko ◽  
O. G. Badalyan

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


2016 ◽  
Vol 791 ◽  
pp. 568-588 ◽  
Author(s):  
Andrew D. Gilbert ◽  
Joanne Mason ◽  
Steven M. Tobias

In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a $TR_{m}^{1/3}$ time scale, for magnetic Reynolds number $R_{m}\gg 1$ ($T$ being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the $TR_{m}^{1/2}$ time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number $R_{m}/R_{e}$ is taken to be small, with $R_{m}$ large, and a range of initial field strengths $b_{0}$ is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold $b_{core}=O(UR_{m}^{-1/3})$, flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here $U$ is a velocity scale of the flow and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén waves that propagate away. The second threshold is $b_{dynam}=O(UR_{m}^{-3/4})$, below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation, leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order $TR_{m}$.


1991 ◽  
Vol 130 ◽  
pp. 353-369 ◽  
Author(s):  
Douglas S. Hall

AbstractSpottedness, as evidenced by photometric variability in 277 late-type binary and single stars, is found to occur when the Rossby number is less than about 2/3. This holds true when the convective turnover time versus B–V relation of Gilliland is used for dwarfs and also for subgiants and giants if their turnover times are twice and four times longer, respectively, than for dwarfs. Differential rotation is found correlated with rotation period (rapidly rotating stars approaching solid-body rotation) and also with lobe-filling factor (the differential rotation coefficient k is 2.5 times larger for F = 0 than F = 1). Also reviewed are latitude extent of spottedness, latitude drift during a solar-type cycle, sector structure and preferential longitudes, starspot lifetimes, and the many observational manifestations of magnetic cycles.


Solar Physics ◽  
1991 ◽  
Vol 133 (2) ◽  
pp. 177-194
Author(s):  
L. L. Kichatinov

2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


Sign in / Sign up

Export Citation Format

Share Document