scholarly journals Magnetized stars with differential rotation and a differential toroidal field

2015 ◽  
Vol 450 (4) ◽  
pp. 4016-4024 ◽  
Author(s):  
Kotaro Fujisawa
Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


2017 ◽  
Vol 13 (S335) ◽  
pp. 94-97
Author(s):  
Milton Munroe

All recent models of solar magnetic cycle behaviour assume that the Ω-effect stretches an existing poloidal magnetic field into a toroidal field using differential rotation (Featherstone and Miesch 2015). The α-effect recycles the toroidal field back to a poloidal field by convection and rotation and this is repeated throughout the cycle. Computer simulations based on that conceptual model still leave many questions unanswered. It has not resolved where the solar dynamo is located, what it is or what causes the differential rotation which it takes for granted. Does this paradigm need changing? The conceptual model presented here examines the sun in horizontal sections, analyses its internal structure, presents new characterizations for the solar wind and structures found and shows how their interaction creates rotation, differential rotation, the solar dynamo and the magnetic cycle.


2015 ◽  
Vol 806 (1) ◽  
pp. 10 ◽  
Author(s):  
Jun Mabuchi ◽  
Youhei Masada ◽  
Akira Kageyama

2010 ◽  
Vol 6 (S271) ◽  
pp. 62-68
Author(s):  
T. M. Rogers

AbstractI present axisymmetric numerical simulations of the solar interior, with differential rotation imposed in the convection zone and tachocline and a dipolar poloidal field confined to the radiative interior. In these simulations toroidal field reversals which are equator-ward propagating are driven in the absence of a dynamo. These reversals are driven in the tachocline and are seen at the top of the convection zone. While not solar-like in many ways, these reversals do show some solar-like properties not previously seen in full MHD simulations.


2019 ◽  
Vol 57 (6) ◽  
pp. 407-412
Author(s):  
V. N. Obridko ◽  
O. G. Badalyan

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


2006 ◽  
Vol 16 (2) ◽  
pp. 902-905 ◽  
Author(s):  
W. Chen ◽  
Y. Pan ◽  
S. Wu ◽  
P. Weng ◽  
D. Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document