Absolute intensity calibration of a grazing-incidence spectrograph in the wavelength region 10-120 $Aring$

1968 ◽  
Vol 1 (10) ◽  
pp. 998-1002 ◽  
Author(s):  
F J Morgan ◽  
A H Gabriel ◽  
M J Barton
2017 ◽  
Vol 50 (2) ◽  
pp. 462-474 ◽  
Author(s):  
Andrew J. Allen ◽  
Fan Zhang ◽  
R. Joseph Kline ◽  
William F. Guthrie ◽  
Jan Ilavsky

The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certifiedQrange,Q= 0.008–0.25 Å−1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.


1972 ◽  
Vol 27 (6) ◽  
pp. 989-995 ◽  
Author(s):  
G. Pletsch

Abstract Using a mixture of chlorine with krypton the continuous spectrum resulting from electron attachment to chlorine atoms is produced in a shock tube. Absolute intensity measurements lead to the detachment cross-section of the negative chlorine ion in the wavelength region between the long-wave threshold at 3434 Å and 2700 Å. The cross-section is compared with known experimental and theoretical values.


1998 ◽  
Vol 5 (3) ◽  
pp. 1069-1071 ◽  
Author(s):  
Masakazu Mizutani ◽  
Hiromichi Niikura ◽  
Atsunari Hiraya ◽  
Koichiro Mitsuke

Synchrotron radiation emitted from the UVSOR storage ring is monochromated by a grazing-incidence monochromator and introduced coaxially with the second harmonic of a mode-locked Ti:sapphire laser. Sample gases, N2 and N2O, are photoionized into vibronically ground N2 + with the fundamental light of the undulator radiation at 18.0 and 18.6 eV, respectively. Laser-induced fluorescence (LIF) excitation spectra of N2 + from N2 and N2O are measured in the laser wavelength region of the (B 2Σ u +, v′ = 0) ← (X 2Σg +, v′′ = 0) transition at 389–392 nm. The LIF excitation spectra of N2 + exhibit two maxima due to the P and R branches in which rotational bands are heavily overlapped. The rotational temperature is determined by simulating an LIF excitation spectrum by using the theoretical intensity distribution of rotation bands convoluted with the spectral width of the laser.


X-ray gratings have been developed for use in the wavelength region of 0.01-20 nm, where it is required to employ a grazing incidence configuration. The gratings have a rectangular profile and radiation is diffracted both from the tops and bottoms of the grooves. They therefore differ from blazed gratings, used at grazing incidence, in that a substantial portion of the grating participates in the diffraction process. A scalar diffraction theory has been developed which demonstrates that grating diffraction efficiency varies periodically with wavelength, pitch, groove depth and incidence angle. The theory can be used to optimize grating parameters for most efficient use in any selected region of the spectrum. The gratings are produced by processing a ruled 300 lines per millimetre master grating, so that surface profile defects introduced by ruling are eliminated. Grating performance has been assessed by means of a specially designed grating analyser in addition to spectrometers and a spectrograph. The experimental results are in qualitative agreement with theory. At very short wavelengths of 0.05 nm and grazing incidence angles of about 5', the diffraction efficiency in the first order is below 1 %. The efficiency rises rapidly to between 5 and 10 % at 0.15 nm and to 20 % in the 1 nm region where the incidence angles are typically a few degrees.


1997 ◽  
Vol 36 (25) ◽  
pp. 6411 ◽  
Author(s):  
W. R. Hunter ◽  
J. F. Seely ◽  
M. P. Kowalski ◽  
J. C. Rife ◽  
T. W. Barbee

2012 ◽  
Vol 7 (0) ◽  
pp. 2402139-2402139 ◽  
Author(s):  
Chunfeng DONG ◽  
Shigeru MORITA ◽  
Motoshi GOTO ◽  
Erhui WANG

Sign in / Sign up

Export Citation Format

Share Document