Accurate density measurements of reference liquids by a magnetic suspension balance

Metrologia ◽  
2004 ◽  
Vol 41 (2) ◽  
pp. S84-S94 ◽  
Author(s):  
N Kuramoto ◽  
K Fujii ◽  
A Waseda
2020 ◽  
pp. 089270572097619
Author(s):  
Hamidreza Azimi

In this work, we used three gases (CO2, N2 and normal hexane) for diffusivity measurements in Acrylonitrile butadiene styrene (ABS). We proposed a diffusion model that the diffusion coefficients of each gas in ABS could be estimated from the specific volume of ABS/gas mixture and chemical potential of gas in ABS. The solubility and diffusivity of three gases into ABS were determined by a magnetic suspension balance. The results showed that the solubility and diffusivity of three gases increased with increasing of pressure. Also it was determined that N2 has a lowest solubility and the highest diffusivity in ABS in all temperature and pressure ranges. It was shown that there was a suitable overlapping between the experimental and predicted values from the proposed model, in which the proposed model could successfully estimate the diffusion coefficient of mentioned gases in ABS in all temperature and pressure ranges.


2005 ◽  
Vol 23 (9) ◽  
pp. 685-702 ◽  
Author(s):  
J.U. Keller ◽  
N. Iossifova ◽  
W. Zimmermann

A new method for measuring the binary co-adsorption equilibria of gas mixtures with non-isomeric components on porous solids such as activated carbons or zeolites is proposed. The method does not require an analysis of the sorptive gas phase in adsorption equilibrium and can be automated fairly simply. It consists of a simple volumetric/manometric gas expansion arrangement combined with the measurement of the density of the sorptive gas mixture in equilibrium via the buoyancy of a sinker fixed to a microbalance. These gas density measurements can be performed on-line preferably with a magnetic suspension balance (MSB) (Rubotherm GmbH, Bochum, Germany, 2-site-type). The experimental lay-out of the instrument used is given and the measurement procedure is outlined. The theory of the measurement is presented and expressions for experimental uncertainties of component masses adsorbed are provided. As examples, the co-adsorption equilibria data of gas mixtures (CO2/CH4) and (H2/CH4) on activated carbon (D47/3, CarboTech, Essen, Germany) at 293 K and 333 K for pressures up to 2 MPa are presented and discussed to a certain extent.


2018 ◽  
Vol 664 ◽  
pp. 128-135 ◽  
Author(s):  
Ricarda Kendler ◽  
Frieder Dreisbach ◽  
Reza Seif ◽  
Stefan Pollak ◽  
Marcus Petermann

Sign in / Sign up

Export Citation Format

Share Document