Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy

1994 ◽  
Vol 39 (1) ◽  
pp. 177-196 ◽  
Author(s):  
S J Matcher ◽  
M Cope ◽  
D T Delpy
2012 ◽  
Vol 12 (04) ◽  
pp. 1240013 ◽  
Author(s):  
SAMANTA ROSATI ◽  
GABRIELLA BALESTRA ◽  
FILIPPO MOLINARI

Diabetic patients might present peripheral microcirculation impairment and might benefit from physical training. Thirty-nine diabetic patients underwent the monitoring of the tibialis anterior muscle oxygenation during a series of voluntary ankle flexo-extensions by near-infrared spectroscopy (NIRS). NIRS signals were acquired before and after training protocols. Sixteen control subjects were tested with the same protocol. Time-frequency distributions of the Cohen's class were used to process the NIRS signals relative to the concentration changes of oxygenated and reduced hemoglobin. A total of 24 variables were measured for each subject and the most discriminative were selected by using four feature selection algorithms: QuickReduct, Genetic Rough-Set Attribute Reduction, Ant Rough-Set Attribute Reduction, and traditional ANOVA. Artificial neural networks were used to validate the discriminative power of the selected features. Results showed that different algorithms extracted different sets of variables, but all the combinations were discriminative. The best classification accuracy was about 70%. The oxygenation variables were selected when comparing controls to diabetic patients or diabetic patients before and after training. This preliminary study showed the importance of feature selection techniques in NIRS assessment of diabetic peripheral vascular impairment.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Andrew Macnab ◽  
Babak Shadgan ◽  
Kourosh Afshar ◽  
Lynn Stothers

We describe innovative methodology for monitoring alterations in bladder oxygenation and haemodynamics in humans using near-infrared spectroscopy (NIRS). Concentrations of the chromophores oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin and their sum (total haemoglobin) differ during bladder contraction in health and disease. A wireless device that incorporates three paired light emitting diodes (wavelengths 760 and 850 nanometers) and silicon photodiode detector collects data transcutaneously (10 Hz) with the emitter/detector over the bladder during spontaneous bladder emptying. Data analysis indicates comparable patterns of change in chromophore concentration in healthy children and adults (positive trend during voiding, predominantly due to elevated O2Hb), but different changes in symptomatic subjects with characteristic chromophore patterns identified for voiding dysfunction due to specific pathophysiologies: bladder outlet obstruction (males), overactive bladder (females), and nonneurogenic dysfunction (children). Comparison with NIRS muscle data suggests altered bladder haemodynamics and/or oxygenation may underlie voiding dysfunction offering new insight into the causal physiology.


2021 ◽  
Vol 13 (18) ◽  
pp. 3553
Author(s):  
Eva-Maria Bønnelycke ◽  
Gordon Hastie ◽  
Kimberley Bennett ◽  
Jana Kainerstorfer ◽  
Ryan Milne ◽  
...  

Chemical immobilisation of pinnipeds is a routine procedure in research and veterinary practice. Yet, there are inevitable risks associated with chemical immobilisation, and the physiological response to anaesthetic agents in pinnipeds remains poorly understood. The current study used wearable continuous-wave near-infrared spectroscopy (NIRS) data from 10 trials of prolonged anaesthesia (0.5 to 1.4 h) induced through ketamine and midazolam in five grey seals (Halichoerus grypus) involved in other procedures. The aim of this study was to (1) analyse the effect of each compound on heart rate, arterial oxygen saturation (SpO2), and relative concentration changes in oxygenated [ΔO2Hb] and deoxygenated haemoglobin [ΔHHb] in cerebral tissue and (2) to investigate the use of NIRS as a real-time physiological monitoring tool during chemical immobilisation. Average group responses of ketamine (n = 27) and midazolam (n = 11) administrations were modelled using generalised additive mixed models (GAMM) for each dependent variable. Following ketamine and midazolam administration, [ΔHHb] increased and [ΔO2Hb] remained relatively stable, which was indicative of apnoea. Periods of apnoea were confirmed from respiratory band data, which were simultaneously collected during drugging trials. Given that SpO2 remained at 97% during apnoea, we hypothesized that increasing cerebral [ΔHHb] was a result of venous congestion as opposed to decreased oxygen delivery. Changes in heart rate were limited and appeared to be driven by the individual pharmacological actions of each drug. Future research could include simultaneous measures of metabolic rate, such as the relative change in concentration of cytochrome-c-oxidase, to guide operators in determining when apnoea should be considered prolonged if changes in [ΔHHb] and [ΔO2Hb] occur beyond the limits recorded in this study. Our findings support the use of NIRS as real-time physiological monitoring tool during pinniped chemical immobilisation, which could assist veterinarians and researchers in performing safe anaesthetic procedures.


2011 ◽  
Vol 25 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ramón Guevara ◽  
Lynn Stothers ◽  
Andrew Macnab

Background: Near-infrared spectroscopy (NIRS) has recognized potential but limited application for non-invasive diagnostic evaluation. Data analysis methodology that reproducibly distinguishes between the presence or absence of physiologic abnormality could broaden clinical application of this optical technique.Methods: Sample data sets from simultaneous NIRS bladder monitoring and invasive urodynamic pressure-flow studies (UDS) are used to illustrate how a diagnostic algorithm is constructed using classification and regression tree (CART) analysis. Misclassification errors of CART and linear discriminant analysis (LDA) are computed and examples of other urological NIRS data likely amenable to CART analysis presented.Results: CART generated a clinically relevant classification algorithm (error 4%) using 46 data sets of changes in chromophore concentration composed of the whole time series without specifying features. LDA did not (error 16%). Using CART NIRS data provided comparable discriminant ability to the UDS diagnostic nomogram for the presence or absence of obstructive pathology (88% specificity, 84% precision). Pilot data examples from children with and without voiding dysfunction and women with mild or severe pelvic floor muscle dysfunction also show potentially diagnostic differences in chromophore concentration.Conclusions: CART analysis can likely be applied in other NIRS monitoring applications intended to classify patients into those with and without pathology.


2011 ◽  
Vol 11 ◽  
pp. 1206-1215 ◽  
Author(s):  
U. Wolf ◽  
F. Scholkmann ◽  
R. Rosenberger ◽  
M. Wolf ◽  
M. Nelle

Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.


2011 ◽  
Vol 138-139 ◽  
pp. 553-559
Author(s):  
Ting Li ◽  
Zhi Li Zhang ◽  
Yi Zheng

Although functional near-infrared spectroscopy (fNIRS) has been developing as a useful tool for monitoring functional brain activity since the early 1990s, the quantification of hemoglobin concentration changes is still controversial and there are few detailed reports especially for continuous-wave (CW) instruments. By means of a two-layer model experiment mimicking hemodynamic changes in brain and mathematical analysis based on the modified Beer-Lambert law, we established an algorithm for a CW functional near-infrared spectroscopy (CW-fNIRS). The accuracy of this algorithm was validated both in comparison with direct measurements on brain tissue model and in vivo measurement upon human valsalva maneuver. This described method can also be utilized for other CW-fNIRS instruments to establish measuring algorithm.


1999 ◽  
Vol 277 (3) ◽  
pp. H1045-H1052 ◽  
Author(s):  
H. B. Nielsen ◽  
R. Boushel ◽  
P. Madsen ◽  
N. H. Secher

The combined effects of hyperventilation and arterial desaturation on cerebral oxygenation ([Formula: see text]) were determined using near-infrared spectroscopy. Eleven competitive oarsmen were evaluated during a 6-min maximal ergometer row. The study was randomized in a double-blind fashion with an inspired O2 fraction of 0.21 or 0.30 in a crossover design. During exercise with an inspired O2 fraction of 0.21, the arterial CO2 pressure (35 ± 1 mmHg; mean ± SE) and O2 pressure (77 ± 2 mmHg) as well as the hemoglobin saturation (91.9 ± 0.7%) were reduced ( P < 0.05).[Formula: see text] was reduced from 80 ± 2 to 63 ± 2% ( P < 0.05), and the near-infrared spectroscopy-determined concentration changes in deoxy- (ΔHb) and oxyhemoglobin (ΔHbO2) of the vastus lateralis muscle increased 22 ± 3 μM and decreased 14 ± 3 μM, respectively ( P < 0.05). Increasing the inspired O2fraction to 0.30 did not affect ventilation (174 ± 4 l/min), but arterial CO2 pressure (37 ± 2 mmHg), O2 pressure (165 ± 5 mmHg), and hemoglobin O2saturation (99 ± 0.1%) increased ( P < 0.05).[Formula: see text] remained close to the resting level during exercise (79 ± 2 vs. 81 ± 2%), and although the muscle ΔHb (18 ± 2 μM) and ΔHbO2 (−12 ± 3 μM) were similar to those established without O2 supplementation, work capacity increased from 389 ± 11 to 413 ± 10 W ( P < 0.05). These results indicate that an elevated inspiratory O2fraction increases exercise performance related to maintained cerebral oxygenation rather than to an effect on the working muscles.


Sign in / Sign up

Export Citation Format

Share Document