On the interaction of MHD waves with a plasma surrounded by a cold gas-mantle

1983 ◽  
Vol 25 (12) ◽  
pp. 1389-1406 ◽  
Author(s):  
M Bures
Keyword(s):  
1994 ◽  
Vol 144 ◽  
pp. 503-505
Author(s):  
R. Erdélyi ◽  
M. Goossens ◽  
S. Poedts

AbstractThe stationary state of resonant absorption of linear, MHD waves in cylindrical magnetic flux tubes is studied in viscous, compressible MHD with a numerical code using finite element discretization. The full viscosity tensor with the five viscosity coefficients as given by Braginskii is included in the analysis. Our computations reproduce the absorption rates obtained by Lou in scalar viscous MHD and Goossens and Poedts in resistive MHD, which guarantee the numerical accuracy of the tensorial viscous MHD code.


2001 ◽  
Vol 7 (2s) ◽  
pp. 74-83
Author(s):  
O.S. Burdo ◽  
◽  
O.K. Cheremnykh ◽  
O.P. Verkhoglyadova ◽  
◽  
...  

2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2016 ◽  
Vol 52 (1-2) ◽  
pp. 199-208 ◽  
Author(s):  
N. E. Molevich ◽  
D. S. Ryashchikov ◽  
D. I. Zavershinskiy

2008 ◽  
Vol 15 (4) ◽  
pp. 681-693 ◽  
Author(s):  
K. Stasiewicz ◽  
J. Ekeberg

Abstract. Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.


2019 ◽  
Vol 490 (1) ◽  
pp. L52-L56
Author(s):  
Bastian Sander ◽  
Gerhard Hensler

ABSTRACT This paper aims at studying the reliability of a few frequently raised, but not proven, arguments for the modelling of cold gas clouds embedded in or moving through a hot plasma and at sensitizing modellers to a more careful consideration of unavoidable acting physical processes and their relevance. At first, by numerical simulations we demonstrate the growing effect of self-gravity on interstellar clouds and, by this, moreover argue against their initial set-up as homogeneous. We apply the adaptive-mesh refinement code flash with extensions to metal-dependent radiative cooling and external heating of the gas, self-gravity, mass diffusion, and semi-analytic dissociation of molecules, and ionization of atoms. We show that the criterion of Jeans mass or Bonnor–Ebert mass, respectively, provides only a sufficient but not a necessary condition for self-gravity to be effective, because even low-mass clouds are affected on reasonable dynamical time-scales. The second part of this paper is dedicated to analytically study the reduction of heat conduction by a magnetic dipole field. We demonstrate that in this configuration, the effective heat flow, i.e. integrated over the cloud surface, is suppressed by only 32 per cent by magnetic fields in energy equipartition and still insignificantly for even higher field strengths.


2021 ◽  
Vol 502 (1) ◽  
pp. 1263-1278
Author(s):  
Richard Kooij ◽  
Asger Grønnow ◽  
Filippo Fraternali

ABSTRACT The large temperature difference between cold gas clouds around galaxies and the hot haloes that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the presence of a magnetic field is highly anisotropic, being strongly suppressed in the direction perpendicular to the magnetic field lines. This is commonly modelled by using a simple prescription that assumes that thermal conduction is isotropic at a certain efficiency f < 1, but its precise value is largely unconstrained. We investigate the efficiency of thermal conduction by comparing the evolution of 3D hydrodynamical (HD) simulations of cold clouds moving through a hot medium, using artificially suppressed isotropic thermal conduction (with f), against 3D magnetohydrodynamical (MHD) simulations with (true) anisotropic thermal conduction. Our main diagnostic is the time evolution of the amount of cold gas in conditions representative of the lower (close to the disc) circumgalactic medium of a Milky-Way-like galaxy. We find that in almost every HD and MHD run, the amount of cold gas increases with time, indicating that hot gas condensation is an important phenomenon that can contribute to gas accretion on to galaxies. For the most realistic orientations of the magnetic field with respect to the cloud motion we find that f is in the range 0.03–0.15. Thermal conduction is thus always highly suppressed, but its effect on the cloud evolution is generally not negligible.


Solar Physics ◽  
2006 ◽  
Vol 238 (1) ◽  
pp. 41-59 ◽  
Author(s):  
Robert Erdélyi ◽  
Viktor Fedun
Keyword(s):  

2004 ◽  
Vol 22 (1) ◽  
pp. 169-182 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
L. J. Baddeley ◽  
J. A. Davies ◽  
R. S. Dhillon ◽  
...  

Abstract. The EISCAT high power heating facility at Tromsø, northern Norway, has been utilised to generate artificial radar backscatter in the fields of view of the CUTLASS HF radars. It has been demonstrated that this technique offers a means of making very accurate and high resolution observations of naturally occurring ULF waves. During such experiments, the usually narrow radar spectral widths associated with artificial irregularities increase at times when small scale-sized (high m-number) ULF waves are observed. Possible mechanisms by which these particle-driven high-m waves may modify the observed spectral widths have been investigated. The results are found to be consistent with Pc1 (ion-cyclotron) wave activity, causing aliasing of the radar spectra, in agreement with previous modelling work. The observations also support recent suggestions that Pc1 waves may be modulated by the action of longer period ULF standing waves, which are simultaneously detected on the magnetospheric field lines. Drifting ring current protons with energies of ∼ 10keV are indicated as a common plasma source population for both wave types. Key words. Magnetospheric physics (MHD waves and instabilities) – Space plasma physics (wave-particle interactions) – Ionosphere (active experiments)


Sign in / Sign up

Export Citation Format

Share Document