Flow through a cylindrical pipe with a periodic array of fractal orifices

2013 ◽  
Vol 45 (6) ◽  
pp. 061405 ◽  
Author(s):  
P A J van Melick ◽  
B J Geurts
1998 ◽  
Vol 08 (04) ◽  
pp. 623-643 ◽  
Author(s):  
SANJA MARUŠIĆ

A fluid flow through an ∊-periodic array of obstacles distributed on a hypersurface (filter) is considered. The study of the asymptotic behavior as ∊→0 for two critical sizes of obstacles ∊ and ∊2 gives two different laws describing a global flow. In this paper we study the case of an intermediate obstacle size ∊β, 1 < β < 2 and we prove the continuity of the filtration law in the low-volume fraction limit.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Zhenglun Alan Wei ◽  
Zhongquan Charlie Zheng ◽  
Xiaofan Yang

A parallel implementation of an immersed-boundary (IB) method is presented for low Reynolds number flow simulations in a representative elementary volume (REV) of porous media that are composed of a periodic array of regularly arranged structures. The material of the structure in the REV can be solid (impermeable) or microporous (permeable). Flows both outside and inside the microporous media are computed simultaneously by using an IB method to solve a combination of the Navier–Stokes equation (outside the microporous medium) and the Zwikker–Kosten equation (inside the microporous medium). The numerical simulation is firstly validated using flow through the REVs of impermeable structures, including square rods, circular rods, cubes, and spheres. The resultant pressure gradient over the REVs is compared with analytical solutions of the Ergun equation or Darcy–Forchheimer law. The good agreements demonstrate the validity of the numerical method to simulate the macroscopic flow behavior in porous media. In addition, with the assistance of a scientific parallel computational library, PETSc, good parallel performances are achieved. Finally, the IB method is extended to simulate species transport by coupling with the REV flow simulation. The species sorption behaviors in an REV with impermeable/solid and permeable/microporous materials are then studied.


1982 ◽  
Vol 8 (4) ◽  
pp. 343-360 ◽  
Author(s):  
A.S. Sangani ◽  
A. Acrivos

2015 ◽  
Vol 39 (1) ◽  
pp. 244-254 ◽  
Author(s):  
Kannanut Chamsri ◽  
Lynn S. Bennethum

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Igor Pažanin ◽  
Marko Radulović

We study the nonsteady flow of a micropolar fluid through a thin cylindrical pipe. The asymptotic behaviour of the flow is found via asymptotic analysis with respect to the small parameter ϵ, representing the pipe’s thickness. The asymptotic approximation is derived in the form of the explicit formulae for the fluid velocity and microrotation. We also provide the numerical examples in order to visualize the effects of the micropolar nature of the fluid. The illustrations indicate the influence of the micropolarity on the effective flow of the fluid in the whole domain. In particular, those effects are most clearly observed for the velocity approximation near the boundary of the domain.


1998 ◽  
Vol 274 (1) ◽  
pp. F223-F231 ◽  
Author(s):  
Matteo Palassini ◽  
Andrea Remuzzi

Viscous flow through fibrous media is characterized macroscopically by the Darcy permeability ( K D). The relationship between K D and the microscopic structure of the medium has been the subject of experimental and theoretical investigations. Calculations of K D based on the solution of the hydrodynamic flow at fiber scale exist in literature only for two-dimensional arrays of parallel fibers. We considered a fiber matrix consisting of a three-dimensional periodic array of cylindrical fibers with uniform radius ( r) and length connected in a tetrahedral structure. According to recent ultrastructural studies, this array of fibers can represent a model for the glomerular basement membrane (GBM). The Stokes flow through the periodic array was simulated using a Galerkin finite element method. The dimensionless ratio K* = K D/ r 2 was determined for values of the fractional solid volume (φ) in the range 0.005 ≤ φ ≤ 0.7. We compared our numerical results, summarized by an interpolating formula relating K* to φ, with previous theoretical determinations of hydraulic permeability in fibrous media. We found a good agreement with the Carman-Kozeny equation only for φ > 0.4. Among the other theoretical analysis considered, only that of Spielman and Goren ( Environ. Sci. Technol. 2: 279–287, 1968) gives satisfactory agreement in the whole range of φ considered. These results can be useful to model combined transport of water and macromolecules through the GBM for the estimation of the radius and length of extracellular protein fibrils.


Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Sign in / Sign up

Export Citation Format

Share Document