Effect of flexibility on flapping wing characteristics under forward flight

2014 ◽  
Vol 46 (5) ◽  
pp. 055515 ◽  
Author(s):  
Jianyang Zhu ◽  
Chaoying Zhou ◽  
Chao Wang ◽  
Lin Jiang
Keyword(s):  
2019 ◽  
Vol 90 ◽  
pp. 246-263 ◽  
Author(s):  
Ahmed A. Hussein ◽  
Ahmed E. Seleit ◽  
Haithem E. Taha ◽  
Muhammad R. Hajj

AIAA Journal ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 1750-1762 ◽  
Author(s):  
Hiroto Nagai ◽  
Koji Isogai

Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 83 ◽  
Author(s):  
Hidetoshi Takahashi ◽  
Kosuke Abe ◽  
Tomoyuki Takahata ◽  
Isao Shimoyama

Beetles have attracted attention from researchers due to their unique combination of a passively flapping forewing and an actively flapping hindwing during flight. Because the wing loads of beetles are larger than the wing loads of other insects, the mechanism of beetle flight is potentially useful for modeling a small aircraft with a large weight. In this paper, we present a beetle-type ornithopter in which the wings are geometrically and kinematically modeled after an actual beetle. Furthermore, the forewing is designed to be changeable between no-wing, flapping-wing, or fixed-wing configurations. Micro-electro-mechanical systems (MEMS) differential pressure sensors were attached to both the forewing and the hindwing to evaluate the aerodynamic performance during flight. Whether the forewing is configured as a flapping wing or a fixed wing, it generated constant positive differential pressure during forward flight, whereas the differential pressure on the hindwing varied with the flapping motion during forward flight. The experimental results suggest that beetles utilize the forewing for effective vertical force enhancement.


Author(s):  
Mustafa Percin ◽  
Jerke Eisma ◽  
Bas Van Oudheusden ◽  
Bart Remes ◽  
Rick Ruijsink ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
G. Q. Zhang ◽  
S. C. M. Yu

Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.


2021 ◽  
Vol 16 (6) ◽  
pp. 064001
Author(s):  
Jong-Seob Han ◽  
Christian Breitsamter

Abstract In order to properly understand aerodynamic characteristics in a flapping wing in forward flight, additional aerodynamic parameters apart from those in hover—an inclined stroke plane, a shifted-back stroke plane, and an advance ratio—must be comprehended in advance. This paper deals with the aerodynamic characteristics of a flapping wing in a shifted-back vertical stroke plane in freestream. A scaled-up robotic arm in a water towing tank was used to collect time-varying forces of a model flapping wing, and a semi-empirical quasi-steady aerodynamic model, which can decompose the forces into steady, quasi-steady, and unsteady components, was used to estimate the forces of the model flapping wing. It was found that the shifted-back stroke plane left a part of freestream as a non-perpendicular component, giving rise to a time-course change in the aerodynamic forces during the stroke. This also brought out two quasi-steady components (rotational and added-mass forces) apart from the steady one, even the wing moved with a constant stroke velocity. The aerodynamic model underestimated the actual forces of the model flapping wing even it can cover the increasingly distributed angle of attack of the vertical stroke plane with a blade element theory. The locations of the centers of pressure suggested a greater pressure gradient and an elongated leading-edge vortex along a wingspan than that of the estimation, which may explain the higher actual force in forward flight.


Sign in / Sign up

Export Citation Format

Share Document