Dynamic Stability of a Hawkmoth-scale Flapping-wing Micro Air Vehicle during Forward Flight

Author(s):  
Joongkwan Kim ◽  
Jong-seob Han ◽  
Sang-Yeon Choi ◽  
Jae-Hung Han
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
G. Q. Zhang ◽  
S. C. M. Yu

Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 362
Author(s):  
Muhammad Yousaf Bhatti ◽  
Sang-Gil Lee ◽  
Jae-Hung Han

This paper proposes an approach to analyze the dynamic stability and develop trajectory-tracking controllers for flapping-wing micro air vehicle (FWMAV). A multibody dynamics simulation framework coupled with a modified quasi-steady aerodynamic model was implemented for stability analysis, which was appended with flight control block for accomplishing various flight objectives. A gradient-based trim search algorithm was employed to obtain the trim conditions by solving the fully coupled nonlinear equations of motion at various flight speeds. Eigenmode analysis showed instability that grew with the flight speed in longitudinal dynamics. Using the trim conditions, we linearized dynamic equations of FWMAV to obtain the optimal gain matrices for various flight speeds using the linear-quadratic regulator (LQR) technique. The gain matrices from each of the linearized equations were used for gain scheduling with respect to forward flight speed. The reference tracking augmented LQR control was implemented to achieve transition flight tracking that involves hovering, acceleration, and deceleration phases. The control parameters were updated once in a wingbeat cycle and were changed smoothly to avoid any discontinuities during simulations. Moreover, trajectories tracking control was achieved successfully using a dual loop control approach. Control simulations showed that the proposed controllers worked effectively for this fairly nonlinear multibody system.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Pengcheng CHI ◽  
Weiping ZHANG ◽  
Wenyuan CHEN ◽  
Hongyi LI ◽  
Kun MENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document