Propagating Optical Phonon Modes and Their Electron-Phonon Interaction Hamiltonians in Asymmetric Wurtzite Nitride Semiconductor Quantum Wells

2006 ◽  
Vol 45 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Zhang Li ◽  
Shi Jun-Jie
Author(s):  
А.Ю. Маслов ◽  
О.В. Прошина

Abstract The specific features of the interaction of charged particles with polar optical phonons have been studied theoretically for quantum wells with the barriers that are asymmetric in their dielectric properties. It is shown that the interaction with interface phonon modes makes the greatest contribution in narrow quantum wells. The parameters of the electron-phonon interaction were found for the cases of different values of the phonon frequencies in the barrier materials. It turned out that a significant (by almost an order of magnitude) change in the parameters of the electron-phonon interaction can occur in such structures. This makes it possible, in principle, to trace the transition from weak to strong interactions in quantum wells of the same type but with different compositions of barrier materials. The conditions are found under which an enhancement of the electron-phonon interaction is possible in an asymmetric structure in comparison with a symmetric one with the barriers of the same composition.


1999 ◽  
Vol 60 (23) ◽  
pp. 16031-16038 ◽  
Author(s):  
Jun-jie Shi ◽  
B. C. Sanders ◽  
Shao-hua Pan ◽  
E. M. Goldys

1997 ◽  
Vol 11 (08) ◽  
pp. 991-1008 ◽  
Author(s):  
R. Chen ◽  
D. L. Lin

The polaronic effect on the hydrogenic 1s–2p+ transition energy of a donor impurity located at the quantum well center in a double heterostructure is studied theoretically in detail. The electron–optical–phonon interaction Hamiltonian is derived on the basis of eigenmodes of lattice vibrations supported by the double heterostructure. Both the confined and interface phonon modes are included in the electron–phonon coupling. The transition energy is calculated as a function of the applied magnetic field for GaAs/Al 1-x Ga x As samples of well -widths d=125 Å, 210 Å and 450 Å by the second-order perturbation. Wide transition gaps are predicted around the two-level and three-level resonances for all three cases. It is found that the transition gap narrows with the increasing well-width but remains larger than the LO and TO phonon frequency difference for d=450 Å as is observed. We also perform the same calculation by assuming that the confined electron interacts with three-dimensional and two-dimensional phonon modes. The transition energy spectra from these calculations appear to be similar to those for a bulk sample, the spectrum splits at the resonance with the longitudinal optical phonon frequency only. From comparisons of our results with these calculations as well as with experiments, it is conclusively established that the wide gap of transition energy is solely due to the interface modes.


Sign in / Sign up

Export Citation Format

Share Document