scholarly journals Relation Between Millimeter Wavelengths Emission and High-Energy Emission for Active Galactic Nuclei

1998 ◽  
Vol 15 (11) ◽  
pp. 856-858 ◽  
Author(s):  
Li-hua Huang ◽  
Dong-rong Jiang ◽  
Xin-wu Cao
2010 ◽  
Vol 19 (06) ◽  
pp. 931-936 ◽  
Author(s):  
ANABELLA T. ARAUDO ◽  
VALENTÍ BOSCH-RAMON ◽  
GUSTAVO E. ROMERO

Active galactic nuclei present continuum and line emission. The emission lines are originated by gas located close to the central supermassive black hole. Some of these lines are broad, and would be produced in a small region called broad-line region. This region could be formed by clouds surrounding the central black hole. In this work, we study the interaction of such clouds with the base of the jets in active galactic nuclei, and we compute the produced high-energy emission. We focus on sources with low luminosities in the inner jet regions, to avoid strong gamma-ray absorption. We find that the resulting high-energy radiation may be significant in Centaurus A. Also, this phenomenon might be behind the variable gamma-ray emission detected in M87, if very large dark clouds are present. The detection of jet–cloud interactions in active galactic nuclei would give information on the properties of the jet base and the very central regions.


2010 ◽  
Vol 6 (S275) ◽  
pp. 131-135
Author(s):  
A. T. Araudo ◽  
V. Bosch-Ramon ◽  
G. E. Romero

AbstractJets are found in a variety of astrophysical sources. In all the cases the jet propagates with a supersonic velocity through the external medium, which can be inhomogeneous, and inhomogeneities could penetrate into the jet. The interaction of the jet material with an obstacle produces a bow-like shock within the jet in which particles can be accelerated up to relativistic energies and emit high-energy photons. In this work, we explore the active galactic nuclei scenario, focusing on the dynamical and radiative consequences of the interaction at different jet heights. We find that the produced high-energy emission could be detectable by the current γ-ray telescopes. In general, the jet-clump interactions are a possible mechanism to produce (steady or flaring) high-energy emission in many astrophysical sources in which jets are present.


1998 ◽  
Vol 11 (2) ◽  
pp. 812-815
Author(s):  
T. Takahashi ◽  
H. Kubo ◽  
G. Madejski

During the last years it has become evident that blazar class of AGN emit a lot of energy in the gamma-ray regime. It is generally thought that the non-thermal emission from blazars, observed from radio to GeV/TeV 7-rays, is radiation of very energetic particles via both synchrotron and Compton processes. This underlines the importance of high-energy emission for models of the blazar class of active galactic nuclei. Most of the gamma-bright AGN are variable, and flares with time scales as short as a day have been observed. This suggests that the site of gamma-ray emission is very compact and situated in a fluid which moves relativistically at a small angle towards the observer. It is generally assumed that the emission originates from the jet of these objects.


2019 ◽  
Vol 629 ◽  
pp. A54 ◽  
Author(s):  
F. Ursini ◽  
L. Bassani ◽  
A. Malizia ◽  
A. Bazzano ◽  
A. J. Bird ◽  
...  

Aims. We aim to measure the physical properties of the hot X-ray corona of two active galactic nuclei, NGC 4388 and NGC 2110. Methods. We analysed the hard X-ray (20–300 keV) INTEGRAL spectrum in conjunction with archival XMM–Newton and NuSTAR data. Results. The X-ray spectrum of both sources is phenomenologically well described by an absorbed cut-off power law. In agreement with previous results, we find no evidence of a Compton reflection component in these sources. We obtain a high-energy cut-off of 200−40+75 keV for NGC 4388 and 320−60+100 keV for NGC 2110. A fit with a thermal Comptonisation model yields a coronal temperature of 80−20+40 keV and 75−15+20 keV, respectively, and an optical depth of approximately two, assuming a spherical geometry. The coronal temperature and luminosity of both sources are consistent with pair production that acts as a thermostat for the thermal plasma. These results emphasise the importance of good signal-to-noise X-ray data above 100 keV to probe the high-energy emission of AGNs.


2008 ◽  
Vol 17 (09) ◽  
pp. 1577-1584
Author(s):  
J.-P. LENAIN ◽  
C. BOISSON ◽  
H. SOL

M 87 is the first extragalactic source detected in the TeV γ-ray domain that is not a blazar, its large scale jet not being aligned to the line of sight. We present here a multi-blob synchrotron self-Compton model accounting explicitly for large viewing angles and moderate Lorentz factors as inferred from magnetohydrodynamic simulations of jet formation, motivated by the detection of M 87 at very high energies (VHE; E > 100 GeV ). Predictions are presented for the very high-energy emission of active galactic nuclei with extended optical or X-ray jet, which could be misaligned blazars but still show some moderate beaming. We include predictions for 3C 273, Cen A and PKS 0521–36.


2014 ◽  
Vol 28 ◽  
pp. 1460165 ◽  
Author(s):  
MANEL PERUCHO

Extragalactic jets in active galactic nuclei (AGN) are divided into two morphological types, namely Fanaroff-Riley I (FRI) and Fanaroff-Riley II (FRII). The former show decollimated structure at the kiloparsec scales and are thought to be decelerated by entrainment within the first kiloparsecs of evolution inside the host galaxy. The entrainment and deceleration can be, at least partly, due to the interaction of jets with stellar winds and gas clouds that enter in the jet as they orbit around the galactic centre. In this contribution, I review recent simulations to study the dynamic effect of entrainment from stellar winds in jets and the direct interaction of jets with gas clouds and stellar winds. I also briefly describe the importance of these interactions as a possible scenario of high-energy emission from extragalactic jets.


2019 ◽  
Vol 15 (S356) ◽  
pp. 122-126
Author(s):  
Hartmut Winkler

AbstractActive Galactic Nuclei (AGN) have long been known to be variable, but the amplitude, timescale and nature of these changes can often differ dramatically from object to object. The richest source of information about the properties of AGN and the physical processes driving these remains the optical spectrum. While this spectrum has remained remarkably steady over decades for some AGN, other objects, referred to as Changing Look AGN, have experienced a comprehensive spectral transformation. Developments in the detection technology have enabled detailed probing in other wavebands, highlighting for example often quite different variability patterns for high energy emission. This paper explores the current characteristics of some long-known (and almost forgotten) Seyfert galaxies. It compares their present optical spectral properties, determined from recent observations at the South African Astronomical Observatory, with those from much earlier epochs. It furthermore considers the implication of the changes that have taken place, alternatively the endurance of specific spectral features, on our understanding of the mechanisms of the observed targets in particular, and on AGN models in general.


2010 ◽  
Vol 19 (06) ◽  
pp. 841-848
Author(s):  
F. TAVECCHIO

Blazars, radio-loud active galactic nuclei with the relativistic jet closely aligned with the line of sight, dominate the extragalactic sky observed at gamma-ray energies, above 100 MeV. We discuss some of the emission properties of these sources, focusing in particular on the "blazar sequence" and the interpretative models of the high-energy emission of BL Lac objects.


Sign in / Sign up

Export Citation Format

Share Document