scholarly journals Holographic positive energy theorems in three-dimensional gravity

2014 ◽  
Vol 31 (15) ◽  
pp. 152001 ◽  
Author(s):  
Glenn Barnich ◽  
Blagoje Oblak
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2006 ◽  
Vol 23 (9) ◽  
pp. 1249-1269 ◽  
Author(s):  
Yu-Heng Tseng ◽  
David E. Dietrich

Abstract A purely z-coordinate Dietrich/Center for Air Sea Technology (DieCAST) ocean model is applied to the Dynamics of Overflow Mixing and Entrainment (DOME) idealized bottom density current problem that is patterned after the Denmark Strait. The numerical results show that the background viscosity plays a more important role than the chosen coordinate system in the entrainment and mixing if the background viscosity is not small enough. Both higher horizontal viscosity and coarser resolution leads to slower along-slope propagation. Reducing vertical mixing parameterization also leads to slower along-slope propagation with thicker plume size vertically. The simulation gives consistent results for the moderate- and fine-resolution runs. At a very coarse grid the dense water descends more slowly and is mainly dominated by diffusion. Time-averaged downstream transport and entrainment are not very sensitive to viscosity after the flow reaches its quasi-steady status. However, more realistic eddies and flow structures are found in low-viscosity runs. The results show good convergence of the resolved flow as expected and clarify the effects of numerical dissipation/mixing on overflow modeling. Larger numerical dissipation is not required nor recommended in z-coordinate models.


1997 ◽  
Vol 129 (2) ◽  
pp. 355-367 ◽  
Author(s):  
T. P. Yegorova ◽  
V. I. Starostenko ◽  
V. G. Kozlenko ◽  
N. I. Pavlenkova

2018 ◽  
Vol 851 ◽  
pp. 507-544 ◽  
Author(s):  
Roberto Inghilesi ◽  
Claudia Adduce ◽  
Valentina Lombardi ◽  
Federico Roman ◽  
Vincenzo Armenio

Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.


Sign in / Sign up

Export Citation Format

Share Document