scholarly journals Three-dimensional gravity with a conformal scalar field and asymptotic Virasoro algebra

2000 ◽  
Vol 61 (10) ◽  
Author(s):  
Makoto Natsuume ◽  
Takashi Okamura ◽  
Masamichi Sato
2003 ◽  
Vol 67 (8) ◽  
Author(s):  
Jack Gegenberg ◽  
Cristián Martínez ◽  
Ricardo Troncoso

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Connor Behan ◽  
Lorenzo Di Pietro ◽  
Edoardo Lauria ◽  
Balt C. van Rees

Abstract We study conformal boundary conditions for the theory of a single real scalar to investigate whether the known Dirichlet and Neumann conditions are the only possibilities. For this free bulk theory there are strong restrictions on the possible boundary dynamics. In particular, we find that the bulk-to-boundary operator expansion of the bulk field involves at most a ‘shadow pair’ of boundary fields, irrespective of the conformal boundary condition. We numerically analyze the four-point crossing equations for this shadow pair in the case of a three-dimensional boundary (so a four-dimensional scalar field) and find that large ranges of parameter space are excluded. However a ‘kink’ in the numerical bounds obeys all our consistency checks and might be an indication of a new conformal boundary condition.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460001
Author(s):  
L. Fatibene ◽  
M. Ferraris ◽  
G. Magnano ◽  
M. Palese ◽  
M. Capone ◽  
...  

We shall consider possible potentials emerging in (purely metric) f(R)-theories for the conformal scalar field. We shall discuss possible approaches to determine models with specific potentials and show that some potentials qualitatively similar to the typical Higgs potentials are allowed.


2006 ◽  
Vol 23 (9) ◽  
pp. 1249-1269 ◽  
Author(s):  
Yu-Heng Tseng ◽  
David E. Dietrich

Abstract A purely z-coordinate Dietrich/Center for Air Sea Technology (DieCAST) ocean model is applied to the Dynamics of Overflow Mixing and Entrainment (DOME) idealized bottom density current problem that is patterned after the Denmark Strait. The numerical results show that the background viscosity plays a more important role than the chosen coordinate system in the entrainment and mixing if the background viscosity is not small enough. Both higher horizontal viscosity and coarser resolution leads to slower along-slope propagation. Reducing vertical mixing parameterization also leads to slower along-slope propagation with thicker plume size vertically. The simulation gives consistent results for the moderate- and fine-resolution runs. At a very coarse grid the dense water descends more slowly and is mainly dominated by diffusion. Time-averaged downstream transport and entrainment are not very sensitive to viscosity after the flow reaches its quasi-steady status. However, more realistic eddies and flow structures are found in low-viscosity runs. The results show good convergence of the resolved flow as expected and clarify the effects of numerical dissipation/mixing on overflow modeling. Larger numerical dissipation is not required nor recommended in z-coordinate models.


Sign in / Sign up

Export Citation Format

Share Document