On the connection between spin and statistics for the massless spinor field

1992 ◽  
Vol 25 (15) ◽  
pp. 4245-4252 ◽  
Author(s):  
D T Stoyanov
1999 ◽  
Vol 60 (6) ◽  
Author(s):  
E. R. Bezerra de Mello ◽  
V. B. Bezerra ◽  
N. R. Khusnutdinov

1985 ◽  
Vol 40 (1) ◽  
pp. 14-28
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


1980 ◽  
Vol 23 (6) ◽  
pp. 506-509
Author(s):  
V. G. Krechet
Keyword(s):  

1972 ◽  
Vol 50 (18) ◽  
pp. 2100-2104 ◽  
Author(s):  
Mark S. Drew

Conformally covariant equations for free spinor fields are determined uniquely by carrying out a descent to Minkowski space from the most general first-order rotationally covariant spinor equations in a six-dimensional flat space. It is found that the introduction of the concept of the "conformally invariant mass" is not possible for spinor fields even if the fields are defined not only on the null hyperquadric but over the entire manifold of coordinates in six-dimensional space.


2010 ◽  
Vol 25 (07) ◽  
pp. 511-523
Author(s):  
JUN LIANG ◽  
YI-SHI DUAN

We study localization of various matter fields on a non-Z2-symmetric scalar thick brane in a pure geometric Weyl integrable manifold in which variations in the length of vectors during parallel transport are allowed and a geometric scalar field is involved in its formulation. It is shown that, for spin 0 scalar field, the massless zero mode can be normalized on the brane. Spin 1 vector field cannot be normalized on the brane. And there is no spinor field which can be trapped on the brane for the case of no Yukawa-type coupling. By introducing the appropriate Yukawa coupling, the left or right chiral fermionic zero mode can be localized on the brane.


1970 ◽  
Vol 1 (10) ◽  
pp. 2795-2807 ◽  
Author(s):  
David Flory
Keyword(s):  

Author(s):  
Yue-Liang Wu

Starting from the motional property of functional field based on the action principle of path integral formulation while proposing maximum coherence motion principle and maximum locally entangled-qubits motion principle as guiding principles, we show that such a functional field as fundamental building block appears naturally as an entangled qubit-spinor field expressed by a locally entangled state of qubits. Its motion brings about the appearance of Minkowski space–time with dimension determined by the motion-correlation [Formula: see text]-spin charge and the emergence of [Formula: see text]-spin/hyperspin symmetry as fundamental symmetry. Intrinsic [Formula: see text]-spin charge displays a periodic feature as the mod 4 qubit number, which enables us to classify all entangled qubit-spinor fields and space–time dimensions into four categories with respect to four [Formula: see text]-spin charges [Formula: see text]. An entangled decaqubit-spinor field in 19-dimensional hyper-space–time is found to be a hyperunified qubit-spinor field which unifies all discovered leptons and quarks and brings on the existence of mirror lepton–quark states. The inhomogeneous hyperspin symmetry [Formula: see text] as hyperunified symmetry in association with inhomogeneous Lorentz-type symmetry [Formula: see text] and global scaling symmetry provides a unified fundamental symmetry. The maximum locally entangled-qubits motion principle is shown to lay the foundation of hyperunified field theory, which enables us to comprehend long-standing questions raised in particle physics and quantum field theory.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
A. R. P. Moreira ◽  
J. E. G. Silva ◽  
C. A. S. Almeida

AbstractWe study a spin 1/2 fermion in a thick braneworld in the context of teleparallel f(T, B) gravity. Here, f(T, B) is such that $$f_1(T,B)=T+k_1B^{n_1}$$ f 1 ( T , B ) = T + k 1 B n 1 and $$f_2(T,B)=B+k_2T^{n_2}$$ f 2 ( T , B ) = B + k 2 T n 2 , where $$n_{1,2}$$ n 1 , 2 and $$k_{1,2}$$ k 1 , 2 are parameters that control the influence of torsion and the boundary term. We assume Yukawa coupling, where one scalar field is coupled to a Dirac spinor field. We show how the $$n_{1,2}$$ n 1 , 2 and $$k_{1,2}$$ k 1 , 2 parameters control the width of the massless Kaluza–Klein mode, the breadth of non-normalized massive fermionic modes and the properties of the analogue quantum-potential near the origin.


Sign in / Sign up

Export Citation Format

Share Document