The atomic and electronic structure of metallic glasses: search for a structure-induced minimum in the density of states

1988 ◽  
Vol 18 (12) ◽  
pp. 2583-2604 ◽  
Author(s):  
J Hafner ◽  
S S Jaswal ◽  
M Tegze ◽  
A Pflugi ◽  
J Krieg ◽  
...  
2009 ◽  
Vol 1224 ◽  
Author(s):  
Liwen F Wan ◽  
Scott P Beckman

AbstractThe structural and electronic properties of AlMgB14 are investigated using ab initio methods. The impact of vacancies and electron doping on the crystal’s atomic and electronic structure is investigated. It is found that removing metal atoms does not influence the density of states, except for changes to the Fermi energy. The density of states of the off-stoichiometric Al0.75Mg0.75B14 crystal and the AlMgB14 crystal with five electrons removed are nearly identical. The removal of six electrons results in an 11% contraction in the crystal’s volume. This is associate with the removal of electrons from the B atoms’ 2p-states.


2013 ◽  
Vol 114 (21) ◽  
pp. 213511 ◽  
Author(s):  
C. C. Yuan ◽  
Y.-F. Yang ◽  
X. K. Xi

1986 ◽  
Vol 27 (1-4) ◽  
pp. 381-384 ◽  
Author(s):  
Gy. Faigel ◽  
L. Gránásy ◽  
T. Kemény ◽  
A. Lovas ◽  
I. Vincze ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Simon Evertz ◽  
Stephan Prünte ◽  
Lena Patterer ◽  
Amalraj Marshal ◽  
Damian M. Holzapfel ◽  
...  

Due to their unique property combination of high strength and toughness, metallic glasses are promising materials for structural applications. As the behaviour of metallic glasses depends on the electronic structure which in turn is defined by chemical composition, we systematically investigate the influence of B concentration on glass transition, topology, magnetism, and bonding for B concentrations x = 2 to 92 at.% in the (Co6.8±3.9Ta)100−xBx system. From an electronic structure and coordination point of view, the B concentration range is divided into three regions: Below 39 ± 5 at.% B, the material is a metallic glass due to the dominance of metallic bonds. Above 69 ± 6 at.%, the presence of an icosahedra-like B network is observed. As the B concentration is increased above 39 ± 5 at.%, the B network evolves while the metallic coordination of the material decreases until the B concentration of 67 ± 5 at.% is reached. Hence, a composite is formed. It is evident that, based on the B concentration, the ratio of metallic bonding to icosahedral bonding in the composite can be controlled. It is proposed that, by tuning the coordination in the composite region, glassy materials with defined plasticity and processability can be designed.


RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98001-98009 ◽  
Author(s):  
Thais Chagas ◽  
Thiago H. R. Cunha ◽  
Matheus J. S. Matos ◽  
Diogo D. dos Reis ◽  
Karolline A. S. Araujo ◽  
...  

We have used atomically-resolved scanning tunneling microscopy and spectroscopy to study the interplay between the atomic and electronic structure of graphene formed on copper via chemical vapor deposition.


2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


Sign in / Sign up

Export Citation Format

Share Document