Effects of ionising radiation exposure on plants, fish and mammals: relevant data for environmental radiation protection

2004 ◽  
Vol 24 (4A) ◽  
pp. A123-A137 ◽  
Author(s):  
A Real ◽  
S Sundell-Bergman ◽  
J F Knowles ◽  
D S Woodhead ◽  
I Zinger
2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 32-44
Author(s):  
E.A. Ainsbury

Medical exposures form the largest manmade contributor to total ionising radiation exposure of the UK population. In recent years, new technologies have been developed to improve treatment and prognosis of individuals treated with radiation for diseases such as cancer. However, there is evidence of public, patient, and medical professional concern that radiation protection regulations and practices, as well as understanding of potential long-term adverse health effects of radiation exposure (in the context of other health risks), have not always ‘kept pace’ with technological developments in this field. This is a truly complex, multi-disciplinary problem for the modern world. The ‘Radiation Theme’ of the Public Health England and Newcastle University Health Protection Research Unit on ‘Chemical and Radiation Threats and Hazards’ is addressing this need, with a key focus on a genuinely interdisciplinary approach bringing together world-leading epidemiologists, radiation biologists, clinicians, statisticians, and artists. In addition, the project has a strong grounding in public, patient, and medical professional involvement in research. Similarly, the EU-CONCERT-funded LDLensRad project seeks to understand the mechanisms of action of low-dose ionising radiation in the lens of the eye, and the potential contribution to the development of cataract – in contemporary research, such projects will only be considered successful when they make use of expertise from a variety of fields and when they are able to demonstrate that the outputs are not only of benefit to society, but that society understands and welcomes the benefits. Finally, successful engagement, training, and retention of early career scientists within this field is crucial for sustainability of the research. Herein, the contribution of embedded interdisciplinary working, stakeholder involvement, and training of early career scientists to recent advancements in the field of medical (and wider) radiation protection research is discussed and considered.


2002 ◽  
Vol 41 (06) ◽  
pp. 245-251 ◽  
Author(s):  
M. Knietsch ◽  
T. Spillmann ◽  
E.-G. Grünbaum ◽  
R. Bauer ◽  
M. Puille

SummaryAim: Establishment of radioiodine treatment of feline hyperthyroidism in veterinary routine in accordance with German radiation protection regulations. Patients and methods: 35 cats with proven hyperthyroidism were treated with 131I in a special ward. Thyroid uptake and effective halflife were determined using gammacamera dosimetry. Patients were released when measured whole body activity was below the limit defined in the German “Strahlenschutzverordnung”. Results: 17/20 cats treated with 150 MBq radioiodine and 15/15 cats treated with 250 MBq had normal thyroid function after therapy, normal values for FT3 and FT4 were reached after two and normal TSH levels after three weeks. In 14 cats normal thyroid function was confirmed by controls 3-6 months later. Thyroidal iodine uptake was 24 ± 10%, effective halflife 2.5 ± 0.7 days. Whole body activity <1 MBq was reached 13 ± 4 days after application of 131I. Radiation exposure of cat owners was estimated as 1.97 Sv/MBq for adults. Conclusion: Radioiodine therapy of feline hyper-thyroidism is highly effective and safe. It can easily be performed in accordance with German radiation protection regulations, although this requires hospitalisation for approximately two weeks. Practical considerations on radiation exposure of cat owners do not justify this long interval. Regulations for the veterinary use of radioactive substances similar to existing regulations for medical use in humans are higly desirable.


1985 ◽  
Author(s):  
M. Bamberg ◽  
D. van Beuningen ◽  
W. Gössner ◽  
Friedrich Heuck ◽  
H. Jung ◽  
...  

2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2017 ◽  
Vol 75 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Lucie Fournier ◽  
Enora Cléro ◽  
Eric Samson ◽  
Sylvaine Caër-Lorho ◽  
Dominique Laurier ◽  
...  

ObjectivesThe French nuclear worker cohort allows for the assessment of cancer risk associated with occupational radiation exposure, but workers are also exposed to medical and environmental radiation which can be of the same order of magnitude. This study aims to examine the impact of non-occupational radiation exposures on the dose-risk analysis between occupational radiation exposure and cancer mortality.MethodsThe cohort included workers employed before 1995 for at least one year by CEA, AREVA NC or EDF and badge-monitored for external radiation exposure. Monitoring results were used to calculate occupational individual doses. Scenarios of work-related X-ray and environmental exposures were simulated. Poisson regression was used to quantify associations between occupational exposure and cancer mortality adjusting for non-occupational radiation exposure.ResultsThe mean cumulative dose of external occupational radiation was 18.4 mSv among 59 004 workers. Depending on the hypotheses made, the mean cumulative work-related X-ray dose varied between 3.1 and 9.2 mSv and the mean cumulative environmental dose was around 130 mSv. The unadjusted excess relative rate of cancer per Sievert (ERR/Sv) was 0.34 (90% CI −0.44 to 1.24). Adjusting for environmental radiation exposure did not substantially modify this risk coefficient, but it was attenuated by medical exposure (ERR/Sv point estimate between 0.15 and 0.23).ConclusionsOccupational radiation risk estimates were lower when adjusted for work-related X-ray exposures. Environmental exposures had a very slight impact on the occupational exposure risk estimates. In any scenario of non-occupational exposure considered, a positive but insignificant excess cancer risk associated with occupational exposure was observed.


Author(s):  
Nataliya Uzlenkova

The review systematized the current data on new classes of pharmacological compounds and biologically active substances in the field of radiation protection in Ukraine, as well as abroad. Methodological approaches and the importance of using appropriate animal models in the development of new pharmacological drugs for radiation protection are described, specifically in the cases when it is impossible to conduct full clinical trials on patients. Current views on the division of pharmacological agents into radioprotectors, radiomitigators, and therapeutic radiation protection agents are examined. The changes in the hematopoietic tissue, gastrointestinal tract and neurovascular system that occur after acute radiation exposure are also described. Particular attention is paid to pharmacological agents that can protect against acute exposure to ionizing radiation by limiting the risk of radiation mortality from the hematological and gastrointestinal forms of radiation syndrome. Results of the effectiveness of tolerant antioxidants with a wide spectrum of biological activity as promising agents for the prevention of acute and delayed radiation-induced pathology, in particular, in lung tissue, are presented. Possible molecular mechanisms of the radioprotective effect of pharmacological compounds on experimental models of total and local radiation exposure are discussed. The effectiveness of the therapeutic use of growth factors and recombinant cytokines in acute bone marrow suppression аfter accidental radiation exposure is shown. The possibilities of cell therapy with myeloid progenitor cells mobilized by tocopherol succinate hematopoietic/progenitor cells and bone marrow mesenchymal stromal cells in acute radiation injuries are shown. Special attention is paid to the importance of improving such methodological approaches and regulatory requirements when introducing into practice new radiation protection facilities in Ukraine. Key words: radiation protection, ionizing radiation, pharmacological agents, acute radiation syndrome. For citation: Uzlenkova NE. New pharmacological means of radiation protection (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019;25(3) :268–77


Sign in / Sign up

Export Citation Format

Share Document