Structures and folding pathways of topologically knotted proteins

2010 ◽  
Vol 23 (3) ◽  
pp. 033101 ◽  
Author(s):  
Peter Virnau ◽  
Anna Mallam ◽  
Sophie Jackson
Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1670
Author(s):  
Agnese Barbensi ◽  
Naya Yerolemou ◽  
Oliver Vipond ◽  
Barbara I. Mahler ◽  
Pawel Dabrowski-Tumanski ◽  
...  

Understanding how knotted proteins fold is a challenging problem in biology. Researchers have proposed several models for their folding pathways, based on theory, simulations and experiments. The geometry of proteins with the same knot type can vary substantially and recent simulations reveal different folding behaviour for deeply and shallow knotted proteins. We analyse proteins forming open-ended trefoil knots by introducing a topologically inspired statistical metric that measures their entanglement. By looking directly at the geometry and topology of their native states, we are able to probe different folding pathways for such proteins. In particular, the folding pathway of shallow knotted carbonic anhydrases involves the creation of a double-looped structure, contrary to what has been observed for other knotted trefoil proteins. We validate this with Molecular Dynamics simulations. By leveraging the geometry and local symmetries of knotted proteins’ native states, we provide the first numerical evidence of a double-loop folding mechanism in trefoil proteins.


2021 ◽  
Author(s):  
Joshua A. Johnson ◽  
Vasiliki Kolliopoulos ◽  
Carlos E. Castro

We demonstrate co-self-assembly of two distinct DNA origami structures with a common scaffold strand through programmable bifurcation of folding pathways.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 656
Author(s):  
Vincent Van Deuren ◽  
Yin-Shan Yang ◽  
Karine de Guillen ◽  
Cécile Dubois ◽  
Catherine Anne Royer ◽  
...  

Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CH groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CH, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CH when compared to amide groups.


2021 ◽  
Vol 143 (3) ◽  
pp. 1447-1457
Author(s):  
Sandhya Bhatia ◽  
Guruswamy Krishnamoorthy ◽  
Jayant B. Udgaonkar

2013 ◽  
Vol 425 (15) ◽  
pp. 2722-2736 ◽  
Author(s):  
E. Rennella ◽  
T. Cutuil ◽  
P. Schanda ◽  
I. Ayala ◽  
F. Gabel ◽  
...  

2017 ◽  
Vol 147 (6) ◽  
pp. 064108 ◽  
Author(s):  
S. Orioli ◽  
S. a Beccara ◽  
P. Faccioli

Sign in / Sign up

Export Citation Format

Share Document