Application of three-dimensional hybrid stereoscopic particle image velocimetry to breaking waves

2006 ◽  
Vol 17 (6) ◽  
pp. 1456-1469 ◽  
Author(s):  
Yasunori Watanabe ◽  
Yoshiyasu Hideshima ◽  
Takaaki Shigematsu ◽  
Kohsei Takehara
2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Emily J. Berg ◽  
Risa J. Robinson

Emphysema is a progressive lung disease that involves permanent destruction of the alveolar walls. Fluid mechanics in the pulmonary region and how they are altered with the presence of emphysema are not well understood. Much of our understanding of the flow fields occurring in the healthy pulmonary region is based on idealized geometries, and little attention has been paid to emphysemic geometries. The goal of this research was to utilize actual replica lung geometries to gain a better understanding of the mechanisms that govern fluid motion and particle transport in the most distal regions of the lung and to compare the differences that exist between healthy and emphysematous lungs. Excised human healthy and emphysemic lungs were cast, scanned, graphically reconstructed, and used to fabricate clear, hollow, compliant models. Three dimensional flow fields were obtained experimentally using stereoscopic particle image velocimetry techniques for healthy and emphysematic breathing conditions. Measured alveolar velocities ranged over two orders of magnitude from the duct entrance to the wall in both models. Recirculating flow was not found in either the healthy or the emphysematic model, while the average flow rate was three times larger in emphysema as compared to healthy. Diffusion dominated particle flow, which is characteristic in the pulmonary region of the healthy lung, was not seen for emphysema, except for very small particle sizes. Flow speeds dissipated quickly in the healthy lung (60% reduction in 0.25 mm) but not in the emphysematic lung (only 8% reduction 0.25 mm). Alveolar ventilation per unit volume was 30% smaller in emphysema compared to healthy. Destruction of the alveolar walls in emphysema leads to significant differences in flow fields between the healthy and emphysemic lung. Models based on replica geometry provide a useful means to quantify these differences and could ultimately improve our understanding of disease progression.


2008 ◽  
Vol 598 ◽  
pp. 141-175 ◽  
Author(s):  
B. GANAPATHISUBRAMANI ◽  
K. LAKSHMINARASIMHAN ◽  
N. T. CLEMENS

Cinematographic stereoscopic particle image velocimetry measurements were performed to resolve small and intermediate scales in the far field of an axisymmetric co-flowing jet. Measurements were performed in a plane normal to the axis of the jet and the time-resolved measurement was converted to quasi-instantaneous three-dimensional data by using Taylor's hypothesis. The quasi-instantaneous three-dimensional data enabled computation of all nine components of the velocity gradient tensor over a volume. The results based on statistical analysis of the data, including computation of joint p.d.f.s and conditional p.d.f.s of the principal strain rates, vorticity and dissipation, are all in agreement with previous numerical and experimental studies, which validates the quality of the quasi-instantaneous data. Instantaneous iso-surfaces of the principal intermediate strain rate (β) show that sheet-forming strain fields (i.e. β > 0) are themselves organized in the form of sheets, whereas line-forming strain fields (β < 0) are organized into smaller spotty structures (not lines). Iso-surfaces of swirling strength (a vortex identification parameter) in the volume reveal that, in agreement with direct numerical simulation results, the intense vortex structures are in the form of elongated ‘worms’ with characteristic diameter of approximately 10η and characteristic length of 60--100η. Iso-surfaces of intense dissipation show that the most dissipative structures are in the form of sheets and are associated with clusters of vortex tubes. Approximately half of the total dissipation occurs in structures that are generally sheet-like, whereas the other half occurs in broad indistinct structures. The largest length scale of dissipation sheets is of order 60η and the characteristic thickness (in a plane normal to the axis of the sheet) is about 10η. The range of scales between 10η (thickness of dissipation sheets, diameter of vortex tubes) to 60η (size of dissipation sheet or length of vortex tubes) is consistent with the bounds for the dissipation range in the energy and dissipation spectrum as inferred from the three-dimensional model energy spectrum.


2002 ◽  
Author(s):  
Steven P. O’Halloran ◽  
B. Terry Beck ◽  
Mohammad H. Hosni ◽  
Thomas P. Gielda

A stereoscopic particle image velocimetry (PIV) system was used to measure flow within a one-tenth-scale room. The dimensions of the scaled room were 732 × 488 × 274 mm (28.8 × 19.2 × 10.8 in.). The measurements were made under isothermal conditions and water was used as the fluid instead of air. Six equally spaced vertical planes along the length of the room were captured and symmetry was utilized so that measurements were only made on one side of the room. A sample size of 50 pairs of PIV images were collected and averaged to determine average velocity. Turbulent kinetic energy was also calculated from the collected data. The equipment configuration, measurement information and the velocity and turbulent kinetic energy results are presented in this paper. The measurements provide detailed three dimensional velocity profiles that could be used to validate numerical simulations.


Volume 3 ◽  
2004 ◽  
Author(s):  
Steven P. O’Halloran ◽  
B. Terry Beck ◽  
Mohammad H. Hosni ◽  
Steven J. Eckels

The flow distribution inside of an evaporator is important to fully understand in order to optimize the design of the evaporator. A stereoscopic particle image velocimetry (PIV) system was used to measure single-phase water flow in a Plexiglas model of an automotive-sized evaporator. The evaporator is a “U-shape” type. Flow enters the inlet header and travels through a series of 26 parallel rectangular tubes. The tubes have a width of 15.5-mm, a flow gap (thickness) of 0.9-mm, and a length of 231-mm. The flow then enters the upper header and flows through another series of 26 parallel tubes to the outlet header. PIV measurements were only made within the headers due to the small size of the tubes, however detailed results were observed. In addition to the single-phase experimental results, computational fluid dynamics (CFD) simulations were conducted using the commercially available software Fluent, and the results compare well to the experimental results. Further work was conducted by injecting nitrogen into the flow to obtain two-phase flow under adiabatic conditions. Due to high vapor volume fractions, PIV could not be used for flow measurement, but a volume collection method was used to measure the flow of water through each tube. Significantly different flow distributions were observed at different inlet volume fractions of nitrogen and further investigation is underway.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 239
Author(s):  
Alex Zanotti

Side-by-side propellers characterise the architecture of most new electric aircraft (eVTOLs) designed in recent years for urban air mobility. The aerodynamic interaction between side-by-side propellers represents one of the key phenomena that characterise the flow field and performance of these novel aircraft configurations. The present article describes the main results of a wind tunnel campaign that aimed to investigate the flow features that characterise this aerodynamic interaction, with a particular application to cruise flight conditions in eVTOLs. With this aim, stereo particle image velocimetry (PIV) measurements were performed in the wake of two co-rotating propeller models in a side-by-side configuration. The three-dimensional flow surveys provided detailed insights into the flow physics of the interacting propellers, with a particular focus on the interactional effects on the trajectory of the tip vortices and the wake topology provided at two different advance ratios by reproducing a moderate and a fast cruise speed of eVTOLs in urban areas.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
F. J. Diez ◽  
M. M. Torregrosa ◽  
S. Pothos

Time-resolved stereoscopic particle image velocimetry (TR-ST-PIV) measurements were performed to compare the velocity and vorticity field, and the three-dimensional high intensity vorticity structures between a round turbulent single-phase jet and a particle-laden jet in crossflow. The experiments involved steady fresh water jet sources with a particle mass loading of ∼2.0% injected into steady fresh water crossflows. The TR-ST-PIV system was combined with a phase discrimination method that separates two-phase stereo PIV images into dispersed phase images and continuous phase images that are analyzed by using particle tracking velocimetry and stereo-PIV algorithms, respectively. The analysis shows the importance of phase separation for accurate velocity results. It provides instantaneous velocity fields where the dispersed phase preferentially concentrated in regions of low vorticity with the velocity not matching the continuous phase. The jet and the particle-laden jets trajectories are compared to each other and with results in the literature. Similarly, a comparison of mean velocity and vorticity fields between both flows suggest enhanced mixing in the particle-laden jet due to the effects of the dispersed phased which lowered the centerline velocities and enhanced the penetration in the cross-stream direction of the continuous phase. The Taylor’s frozen flow hypothesis is applied to reconstruct the 3D high intensity vorticity structures in a volume. The visualization of the three-dimensional structures corresponding to the intermediate scales of the flow shows slightly elongated structures preferentially aligned with the jet centerline axis.


Sign in / Sign up

Export Citation Format

Share Document