Mechanism of isolated pore formation in anodic alumina

2007 ◽  
Vol 18 (40) ◽  
pp. 405302 ◽  
Author(s):  
Q Huang ◽  
W-K Lye ◽  
M L Reed
Author(s):  
S.J Garcia-Vergara ◽  
L Iglesias-Rubianes ◽  
C.E Blanco-Pinzon ◽  
P Skeldon ◽  
G.E Thompson ◽  
...  

This paper examines the mechanism of pore formation in anodic films on aluminium. For this purpose, the dimensional changes of specimens during growth of porous films on aluminium in phosphoric and sulphuric acid electrolytes are examined using transmission and scanning electron microscopies. Further, the compositions of films and the efficiencies of anodizing are determined by Rutherford backscattering spectroscopy and nuclear reaction analysis. Significantly, the efficiency of anodizing is about 60%, while the surface of the anodic film is located above the original aluminium surface, i.e. before anodizing. The ratio of the thickness of the anodic film relative to the thickness of the consumed aluminium is about 1.35 for the selected conditions of anodizing. The behaviour runs counter to the widely accepted mechanism of pore formation by field-assisted dissolution of alumina. It is explained by the high plasticity of the anodic alumina in the barrier region in the presence of ionic transport, with film growth stresses displacing material from the barrier layer towards the cell wall region during anodizing. The response of the film to volume constraints on growth indicates a major role of stress and stress-relief processes in determining the morphology and self-regulating organization of pores.


2003 ◽  
Vol 773 ◽  
Author(s):  
Xiefan Lin ◽  
Anthony S. W. Ham ◽  
Natalie A. Villani ◽  
Whye-Kei Lye ◽  
Qiyu Huang ◽  
...  

AbstractStudies of selective adhesion of biological molecules provide a path for understanding fundamental cellular properties. A useful technique is to use patterned substrates, where the pattern of interest has the same length scale as the molecular bonding sites of a cell, in the tens of nanometer range. We employ electrochemical methods to grow anodic alumina, which has a naturally ordered pore structure (interpore spacing of 40 to 400 nm) controlled by the anodization potential. We have also developed methods to selectively fill the alumina pores with materials with contrasting properties. Gold, for example, is electrochemically plated into the pores, and the excess material is removed by backsputter etching. The result is a patterned surface with closely separated islands of Au, surrounded by hydrophilic alumina. The pore spacing, which is determined by fabrication parameters, is hypothesized to have a direct effect on the spatial density of adhesion sites. By attaching adhesive molecules to the Au islands, we are able to observe and study cell rolling and adhesion phenomena. Through the measurements it is possible to estimate the length scale of receptor clusters on the cell surface. This information is useful in understanding mechanisms of leukocytes adhesion to endothelial cells as well as the effect of adhesion molecules adaptation on transmission of extracellular forces. The method also has applications in tissue engineering, drug and gene delivery, cell signaling and biocompatibility design.


2017 ◽  
Author(s):  
yongson hong ◽  
O Pong-Sik ◽  
Ryang Se-Hun ◽  
Sin Kum-Chol ◽  
Ri Un-Byol

In this paper, we considered fabrication of Fe nanowires by AAO template, magnetic property, and influences (fabrication voltage of template, temperature, deposition time, and deposition voltage) on them. <br>


Sign in / Sign up

Export Citation Format

Share Document