Bound states of Klein–Gordon equation for double ring-shaped oscillator scalar and vector potentials

2005 ◽  
Vol 14 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Lu Fa-Lin ◽  
Chen Chang-Yuan ◽  
Sun Dong-Sheng
2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2008 ◽  
Vol 23 (35) ◽  
pp. 3005-3013 ◽  
Author(s):  
A. REZAEI AKBARIEH ◽  
H. MOTAVALI

The exact solutions of the one-dimensional Klein–Gordon equation for the Rosen–Morse type potential with equal scalar and vector potentials are presented. First, we briefly review Nikiforov–Uvarov mathematical method. Using this method, wave functions and corresponding exact energy equation are obtained for the s-wave bound state. It has been shown that the results for Rosen–Morse type potentials reduce to the standard Rosen–Morse well and Eckart potentials in the special case. The PT-symmetry for these potentials is also considered.


2009 ◽  
Vol 24 (01) ◽  
pp. 161-172 ◽  
Author(s):  
GAO-FENG WEI ◽  
SHI-HAI DONG ◽  
V. B. BEZERRA

The approximately analytical bound and scattering state solutions of the arbitrary l wave Klein–Gordon equation for mixed Eckart potentials are obtained through a proper new approximation to the centrifugal term. The normalized analytical radial wave functions of the l wave Klein–Gordon equation with the mixed Eckart potentials are presented and the corresponding energy equations for bound states and phase shifts for scattering states are derived. It is shown that the energy levels of the continuum states reduce to those of the bound states at the poles of the scattering amplitude. Two special cases — for the s wave and for l = 0 and β = 0 — are also studied, briefly.


2006 ◽  
Vol 21 (02) ◽  
pp. 313-325 ◽  
Author(s):  
VÍCTOR M. VILLALBA ◽  
CLARA ROJAS

We solve the Klein–Gordon equation in the presence of a spatially one-dimensional cusp potential. The bound state solutions are derived and the antiparticle bound state is discussed.


Sign in / Sign up

Export Citation Format

Share Document