Variational principle and dynamical equations of discrete nonconservative holonomic systems

2006 ◽  
Vol 15 (2) ◽  
pp. 249-252 ◽  
Author(s):  
Liu Rong-Wan ◽  
Zhang Hong-Bin ◽  
Chen Li-Qun
2019 ◽  
Vol 35 (05) ◽  
pp. 2050009 ◽  
Author(s):  
M. Sharif ◽  
Qanitah Ama-Tul-Mughani

In this paper, we consider a non-static cylindrically symmetric self-gravitating system with anisotropic matter configuration and investigate its stability regions by using a homogenous model. We establish perturbed form of dynamical equations by using Eulerian and Lagrangian approaches. The conservation of baryon number is applied to obtain adiabatic index as well as perturbed pressure. A variational principle is used to find characteristic frequency which helps to compute the instability criteria. It is found that dynamical instability can be prevented till the radius of a cylinder exceeds the limit R[Formula: see text]18. We conclude that the system becomes unstable against radial oscillations as the radial pressure increases relative to tangential pressure.


Author(s):  
P Herman

Some consequences concerning holonomic systems described in terms of the inertial quasi-velocities (IQV) are discussed in this note. Introducing the IQV vector into Lagrange's formulation leads to first-order equations with the identity mass matrix of the system. The first-order differential equations give an interesting insight into dynamics and some important properties. The two examples that are provided use the dynamical equations in terms of IQV.


1995 ◽  
Vol 62 (1) ◽  
pp. 216-222 ◽  
Author(s):  
T. A. Loduha ◽  
B. Ravani

In this paper we present a method for obtaining first-order decoupled equations of motion for multirigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or holonomic systems with unreduced configuration coordinates, we incorporate an orthogonal complement in conjunction with the congruency transformation. A pair of examples illustrate the results. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.


2010 ◽  
Vol 56 (197) ◽  
pp. 480-496 ◽  
Author(s):  
John K. Dukowicz ◽  
Stephen F. Price ◽  
William H. Lipscomb

AbstractThe formulation of a physical problem in terms of a variational (or action) principle conveys significant advantages for the analytical formulation and numerical solution of that problem. One such problem is ice-sheet dynamics as described by non-Newtonian Stokes flow, for which the variational principle can be interpreted as stating that a measure of heat dissipation, due to internal deformation and boundary friction, plus the rate of loss of total potential energy is minimized under the constraint of incompressible flow. By carrying out low-aspect-ratio approximations to the Stokes flow problem within this variational principle, we obtain approximate dynamical equations and boundary conditions that are internally consistent and preserve the analytical structure of the full Stokes system. This also allows us to define an action principle for the popular first-order or ‘Blatter–Pattyn’ shallow-ice approximation that is distinct from the action principle for the Stokes problem yet preserves its most important properties and elucidates various details about this approximation. Further approximations within this new action functional yield the standard zero-order shallow-ice and shallow-shelf approximations, with their own action principles and boundary conditions. We emphasize the specification of boundary conditions, which are problematic to derive and implement consistently in approximate models but whose formulation is greatly simplified in a variational setting.


Author(s):  
S. Nakahara ◽  
D. M. Maher

Since Head first demonstrated the advantages of computer displayed theoretical intensities from defective crystals, computer display techniques have become important in image analysis. However the computational methods employed resort largely to numerical integration of the dynamical equations of electron diffraction. As a consequence, the interpretation of the results in terms of the defect displacement field and diffracting variables is difficult to follow in detail. In contrast to this type of computational approach which is based on a plane-wave expansion of the excited waves within the crystal (i.e. Darwin representation ), Wilkens assumed scattering of modified Bloch waves by an imperfect crystal. For localized defects, the wave amplitudes can be described analytically and this formulation has been used successfully to predict the black-white symmetry of images arising from small dislocation loops.


Sign in / Sign up

Export Citation Format

Share Document