constrained dynamical systems
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Steve Alan Talla Ouambo ◽  
Alexandre Teplaira Boum ◽  
Adolphe Moukengue Imano ◽  
Jean-Pierre Corriou

Although moving horizon estimation (MHE) is a very efficient technique for estimating parameters and states of constrained dynamical systems, however, the approximation of the arrival cost remains a major challenge and therefore a popular research topic. The importance of the arrival cost is such that it allows information from past measurements to be introduced into current estimates. In this paper, using an adaptive estimation algorithm, we approximate and update the parameters of the arrival cost of the moving horizon estimator. The proposed method is based on the least-squares algorithm but includes a variable forgetting factor which is based on the constant information principle and a dead zone which ensures robustness. We show by this method that a fairly good approximation of the arrival cost guarantees the convergence and stability of estimates. Some simulations are made to show and demonstrate the effectiveness of the proposed method and to compare it with the classical MHE.


Robotica ◽  
2020 ◽  
Vol 38 (12) ◽  
pp. 2138-2150
Author(s):  
Amin Talaeizadeh ◽  
Mahmoodreza Forootan ◽  
Mehdi Zabihi ◽  
Hossein Nejat Pishkenari

SUMMARYDynamic modeling is a fundamental step in analyzing the movement of any mechanical system. Methods for dynamical modeling of constrained systems have been widely developed to improve the accuracy and minimize computational cost during simulations. The necessity to satisfy constraint equations as well as the equations of motion makes it more critical to use numerical techniques that are successful in decreasing the number of computational operations and numerical errors for complex dynamical systems. In this study, performance of a variant of Kane’s method compared to six different techniques based on the Lagrange’s equations is shown. To evaluate the performance of the mentioned methods, snake-like robot dynamics is considered and different aspects such as the number of the most time-consuming computational operations, constraint error, energy error, and CPU time assigned to each method are compared. The simulation results demonstrate the superiority of the variant of Kane’s method concerning the other ones.


2019 ◽  
Vol 6 (1) ◽  
pp. 348-365 ◽  
Author(s):  
Ryohei Chihara

AbstractWe study special Lagrangian fibrations of SU(3)-manifolds, not necessarily torsion-free. In the case where the fiber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of solder 1-forms, connection 1-forms and equivariant 3 × 3 positive-definite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3).


Sign in / Sign up

Export Citation Format

Share Document