scholarly journals Inside the final black hole: puncture and trapped surface dynamics

2020 ◽  
Vol 37 (15) ◽  
pp. 15LT02 ◽  
Author(s):  
Christopher Evans ◽  
Deborah Ferguson ◽  
Bhavesh Khamesra ◽  
Pablo Laguna ◽  
Deirdre Shoemaker
2018 ◽  
Vol 10 (4) ◽  
pp. 24
Author(s):  
Mohammed Kumah ◽  
Francis Oduro

Black holes are classically characterized by event horizon which is the boundary of the region from which particles or photons can escape to infinity in the future direction. Unfortunately this characterization is a global concept as the knowledge of the whole spacetime is needed in order to locate a black hole region and the event horizon. It is therefore important to recognize black holes locally; this has motivated the need to use local approach to characterize black holes. Specifically, we apply covariant divergence and Gauss’s divergence theorems to compute the divergences and the fluxes of appropriate null vectors in the Kerr spacetime to actually determine the existence of trapped and marginally trapped surfaces in its black hole region.


2018 ◽  
Vol 10 (1) ◽  
pp. 59
Author(s):  
Mohammed Kumah ◽  
Francis T. Oduro

Characterizing black holes by means of classical event horizon is a global concept because it depends on future null infinity. This means, to find black hole region and event horizon requires the notion of the entire spacetime which is a teleological concept. With this as a motivation, we use local approach as a complementary means of characterizing black holes. In this paper we apply Gauss divergence and covariant divergence theorems to compute the fluxes and the divergences of the appropriate null vectors in Vaidya spacetime and thus explicitly determine the existence of trapped and marginally trapped surfaces in its black hole region.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Kangjae Lee ◽  
Tetsuya Shiromizu ◽  
Hirotaka Yoshino ◽  
Keisuke Izumi ◽  
Yoshimune Tomikawa

Abstract We study the properties of the loosely trapped surface (LTS) and the dynamically transversely trapping surface (DTTS) in Einstein–Maxwell systems. These concepts of surfaces were proposed by four of the present authors in order to characterize strong gravity regions. We prove the Penrose-like inequalities for the area of LTSs/DTTSs. Interestingly, although the naively expected upper bound for the area is that of the photon sphere of a Reissner–Nordström black hole with the same mass and charge, the obtained inequalities include corrections represented by the energy density or pressure/tension of electromagnetic fields. Due to this correction, the Penrose-like inequality for the area of LTSs is tighter than the naively expected one. We also evaluate the correction term numerically in the Majumdar–Papapetrou two-black-hole spacetimes.


2019 ◽  
pp. 80-91
Author(s):  
Steven Carlip

Chapter 3 used the Schwarzschild metric to obtain predictions for the Solar System. In this chapter, that metric is derived as the unique static, spherically symmetric solution of the vacuum Einstein field equations. For the Solar System, this vacuum solution must be joined to an “interior solution” describing the interior of the Sun. Such solutions are discussed briefly. If, on the other hand, one assumes “vacuum all the way down,” the solution describes a black hole. The chapter analyzes the geometry and physics of the nonrotating black hole: the event horizon, the Kruskal-Szekeres extension, the horizon as a trapped surface and as a Killing horizon. Penrose diagrams are introduced, and a short discussion is given of the four laws of black hole mechanics.


2007 ◽  
Vol 22 (31) ◽  
pp. 5685-5699 ◽  
Author(s):  
DOUGLAS M. GINGRICH

Black hole production at the Large Hadron Collider (LHC) is an interesting consequence of TeV-scale gravity models. The predicted values, or lower limits, for the fundamental Planck scale and number of extra dimensions will depend directly on the accuracy of the black hole production cross-section. We give a range of lower limits on the fundamental Planck scale that could be obtained at LHC energies. In addition, we examine the effects of parton electric charge on black hole production using the trapped-surface approach of general relativity. Accounting for electric charge of the partons could reduce the black hole cross-section by one to four orders of magnitude at the LHC.


Nature ◽  
2020 ◽  
Vol 586 (7827) ◽  
pp. 18-19
Author(s):  
Davide Castelvecchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document