Curvature radius of conic sections: a kinematic derivation

Author(s):  
Riccardo Borghi
Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


2009 ◽  
Author(s):  
Apollonius of Perga
Keyword(s):  

1891 ◽  
Vol 31 (803supp) ◽  
pp. 12836-12837
Author(s):  
C. W. MacCord
Keyword(s):  

2004 ◽  
Vol 50 (170) ◽  
pp. 342-352 ◽  
Author(s):  
Perry Bartelt ◽  
Othmar Buser

AbstractAn essential problem in snow science is to predict the changing form of ice grains within a snow layer. Present theories are based on the idea that form changes are driven by mass diffusion induced by temperature gradients within the snow cover. This leads to the well-established theory of isothermal- and temperature-gradient metamorphism. Although diffusion theory treats mass transfer, it does not treat the influence of this mass transfer on the form — the curvature radius of the grains and bonds — directly. Empirical relations, based on observations, are additionally required to predict flat or rounded surfaces. In the following, we postulate that metamorphism, the change of ice surface curvature and size, is a process of thermodynamic optimization in which entropy production is minimized. That is, there exists an optimal surface curvature of the ice grains for a given thermodynamic state at which entropy production is stationary. This state is defined by differences in ice and air temperature and vapor pressure across the interfacial boundary layer. The optimal form corresponds to the state of least wasted work, the state of minimum entropy production. We show that temperature gradients produce a thermal non-equilibrium between the ice and air such that, depending on the temperature, flat surfaces are required to mimimize entropy production. When the temperatures of the ice and air are equal, larger curvature radii are found at low temperatures than at high temperatures. Thus, what is known as isothermal metamorphism corresponds to minimum entropy production at equilibrium temperatures, and so-called temperature-gradient metamorphism corresponds to minimum entropy production at none-quilibrium temperatures. The theory is in good agreement with general observations of crystal form development in dry seasonal alpine snow.


2013 ◽  
Vol 13 (9) ◽  
pp. 2064-2069 ◽  
Author(s):  
Byung Je Jung ◽  
Hong Jin Kong ◽  
Yong-Hoon Cho ◽  
Chung Hyun Park ◽  
Min Kwan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document