On the simultaneous reconstruction of boundary Robin coefficient and internal source in a slow diffusion system

2021 ◽  
Author(s):  
Mengmeng Zhang ◽  
Jijun Liu
2020 ◽  
Vol 9 (11) ◽  
pp. 9909-9930
Author(s):  
P. A. T. Diabaté ◽  
A. Coulibaly ◽  
K. B. Edja ◽  
A. K. Touré

2019 ◽  
Vol E102.B (8) ◽  
pp. 1595-1606
Author(s):  
Hanxing XUE ◽  
Jiali YOU ◽  
Jinlin WANG
Keyword(s):  

1998 ◽  
Vol 63 (6) ◽  
pp. 761-769 ◽  
Author(s):  
Roland Krämer ◽  
Arno F. Münster

We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.


2003 ◽  
Vol 111 (1) ◽  
pp. 355-360
Author(s):  
Selçuk Işik ◽  
Mustafa Nişanci ◽  
Ergin Er ◽  
Haluk Duman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiichi Kataoka ◽  
Hironori Fujita ◽  
Mutsumi Isa ◽  
Shimpei Gotoh ◽  
Akira Arasaki ◽  
...  

AbstractMorphological variations in human teeth have long been recognized and, in particular, the spatial and temporal distribution of two patterns of dental features in Asia, i.e., Sinodonty and Sundadonty, have contributed to our understanding of the human migration history. However, the molecular mechanisms underlying such dental variations have not yet been completely elucidated. Recent studies have clarified that a nonsynonymous variant in the ectodysplasin A receptor gene (EDAR370V/A; rs3827760) contributes to crown traits related to Sinodonty. In this study, we examined the association between theEDARpolymorphism and tooth root traits by using computed tomography images and identified that the effects of theEDARvariant on the number and shape of roots differed depending on the tooth type. In addition, to better understand tooth root morphogenesis, a computational analysis for patterns of tooth roots was performed, assuming a reaction–diffusion system. The computational study suggested that the complicated effects of theEDARpolymorphism could be explained when it is considered that EDAR modifies the syntheses of multiple related molecules working in the reaction–diffusion dynamics. In this study, we shed light on the molecular mechanisms of tooth root morphogenesis, which are less understood in comparison to those of tooth crown morphogenesis.


Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.


Sign in / Sign up

Export Citation Format

Share Document