Molecular force sensors to measure stress in cells

2017 ◽  
Vol 50 (23) ◽  
pp. 233001 ◽  
Author(s):  
Meenakshi Prabhune ◽  
Florian Rehfeldt ◽  
Christoph F Schmidt
2018 ◽  
Author(s):  
Y. Murad ◽  
I. T.S. Li

AbstractTo understand the mechanical forces involved in cell adhesion, molecular force sensors have been developed to study tension through adhesion proteins. Recently, a class of molecular force sensors called tension gauge tether (TGT) have been developed that rely on irreversible force-dependent dissociation of DNA duplex to study cell adhesion forces. While the TGT offer high signal-to-noise ratio and is ideal for studying fast / single molecular adhesion processes, quantitative interpretation of experimental results has been challenging. Here we used computational approach to investigate how TGT fluorescence readout can be quantitatively interpreted. In particular we studied force sensors made of a single TGT, multiplexed single TGTs, and two TGTs connected in series. Our results showed that fluorescence readout using a single TGT can result from drastically different combinations of force history and adhesion event density that span orders of magnitude. In addition, the apparent behaviour of the TGT is influenced by the tethered receptor-ligand, making it necessary to calibrate the TGT with every new receptor-ligand. To solve this problem, we proposed a system of two serially connected TGTs. Our result shows that not only is the ratiometric readout of serial TGT independent of the choice of receptor-ligand, it is able to reconstruct force history with sub-pN force resolution. This is also not possible by simply multiplexing different types of TGTs together. Lastly, we systematically investigated how sequence composition of the two serially connected TGTs can be tuned to achieve different dynamic range. This computational study demonstrated how serially connected irreversible molecular dissociation processes can accurately quantify molecular force, and laid the foundation for subsequent experimental studies.


2020 ◽  
Vol 48 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Susana M. Beltrán ◽  
Marvin J. Slepian ◽  
Rebecca E. Taylor

2017 ◽  
Vol 197 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Andrea Freikamp ◽  
Alexander Mehlich ◽  
Christoph Klingner ◽  
Carsten Grashoff

2021 ◽  
Author(s):  
M. Sergides ◽  
L. Perego ◽  
T. Galgani ◽  
C. Arbore ◽  
F.S. Pavone ◽  
...  

AbstractCells sense mechanical signals and forces to probe the external environment and adapt to tissue morphogenesis, external mechanical stresses, and a wide range of diverse mechanical cues. Here, we propose a combination of optical tools to manipulate single cells and measure the propagation of mechanical and biochemical signals inside them. Optical tweezers are used to trap microbeads that are used as handles to manipulate the cell plasma membrane; genetically encoded FRET-based force sensors inserted in F-actin and alpha-actinin are used to measure the propagation of mechanical signals to the cell cytoskeleton; while fluorescence microscopy with single molecule sensitivity can be used with a huge array of biochemical and genetic sensors. We describe the details of the setup implementation, the calibration of the basic components and preliminary characterization of actin and alpha-actinin FRET-based force sensors.


2022 ◽  
Author(s):  
Rachel L. Bender ◽  
Khalid Salaita

2021 ◽  
Vol 136 (3) ◽  
Author(s):  
M. Sergides ◽  
L. Perego ◽  
T. Galgani ◽  
C. Arbore ◽  
F. S. Pavone ◽  
...  

AbstractCells sense mechanical signals and forces to probe the external environment and adapt to tissue morphogenesis, external mechanical stresses and a wide range of diverse mechanical cues. Here, we propose a combination of optical tools to manipulate single cells and measure the propagation of mechanical and biochemical signals inside them. Optical tweezers are used to trap microbeads that are used as handles to manipulate the cell plasma membrane; genetically encoded FRET-based force sensors inserted in F-actin and alpha-actinin are used to measure the propagation of mechanical signals to the cell cytoskeleton, while fluorescence microscopy with single-molecule sensitivity can be used with a huge array of biochemical and genetic sensors. We describe the details of the setup implementation, the calibration of the basic components and preliminary characterization of actin and alpha-actinin FRET-based force sensors.


Author(s):  
A. M. Watrach

During a study of the development of infectious laryngotracheitis (LT) virus in tissue culture cells, unusual tubular formations were found in the cytoplasm of a small proportion of the affected cells. It is the purpose of this report to describe the morphologic characteristics of the tubules and to discuss their possible association with the development of virus.The source and maintenance of the strain of LT virus have been described. Prior to this study, the virus was passed several times in chicken embryo kidney (CEK) tissue culture cells.


Author(s):  
Awtar Krishan ◽  
Dora Hsu

Cells exposed to antitumor plant alkaloids, vinblastine and vincristine sulfate have large proteinacious crystals and complexes of ribosomes, helical polyribosomes and electron-dense granular material (ribosomal complexes) in their cytoplasm, Binding of H3-colchicine by the in vivo crystals shows that they contain microtubular proteins. Association of ribosomal complexes with the crystals suggests that these structures may be interrelated.In the present study cultured human leukemic lymphoblasts (CCRF-CEM), were incubated with protein and RNA-synthesis inhibitors, p. fluorophenylalanine, puromycin, cycloheximide or actinomycin-D before the addition of crystal-inducing doses of vinblastine to the culture medium. None of these compounds could completely prevent the formation of the ribosomal complexes or the crystals. However, in cells pre-incubated with puromycin, cycloheximide, or actinomycin-D, a reduction in the number and size of the ribosomal complexes was seen. Large helical polyribosomes were absent in the ribosomal complexes of cells treated with puromycin, while in cells exposed to cycloheximide, there was an apparent reduction in the number of ribosomes associated with the ribosomal complexes (Fig. 2).


Author(s):  
J. R. Hully ◽  
K. R. Luehrsen ◽  
K. Aoyagi ◽  
C. Shoemaker ◽  
R. Abramson

The development of PCR technology has greatly accelerated medical research at the genetic and molecular levels. Until recently, the inherent sensitivity of this technique has been limited to isolated preparations of nucleic acids which lack or at best have limited morphological information. With the obvious exception of cell lines, traditional PCR or reverse transcription-PCR (RT-PCR) cannot identify the cellular source of the amplified product. In contrast, in situ hybridization (ISH) by definition, defines the anatomical location of a gene and/or it’s product. However, this technique lacks the sensitivity of PCR and cannot routinely detect less than 10 to 20 copies per cell. Consequently, the localization of rare transcripts, latent viral infections, foreign or altered genes cannot be identified by this technique. In situ PCR or in situ RT-PCR is a combination of the two techniques, exploiting the sensitivity of PCR and the anatomical definition provided by ISH. Since it’s initial description considerable advances have been made in the application of in situ PCR, improvements in protocols, and the development of hardware dedicated to in situ PCR using conventional microscope slides. Our understanding of the importance of viral latency or viral burden in regards to HIV, HPV, and KSHV infections has benefited from this technique, enabling detection of single viral copies in cells or tissue otherwise thought to be normal. Clearly, this technique will be useful tool in pathobiology especially carcinogenesis, gene therapy and manipulations, the study of rare gene transcripts, and forensics.


Sign in / Sign up

Export Citation Format

Share Document