Numerical analysis of collision characteristics between charged drop and neutral droplet under uniform electric field

Author(s):  
li jiawei_hust ◽  
Chuan Li ◽  
Pengyu Wang ◽  
Fuyou He ◽  
Menghan Xiao ◽  
...  
Author(s):  
C. T. R. Wilson ◽  
G. I. Taylor

The stability of a charged raindrop has been discussed mathematically by Lord Rayleigh. The case of an uncharged drop in a uniform electric field is perhaps of more meteorological importance but a mathematical discussion of the conditions for stability turns out to be very much more difficult in this case, owing to the fact that the drop ceases to be spherical before it bursts. Moreover it does not seem possible to express its geometrical shape by means of any simple mathematical expressions. On the other hand, by using a soap bubble instead of a water drop it was found possible to carry out experiments under well-defined conditions in this case, whereas experiments with Rayleigh's charged drop would be difficult.


1981 ◽  
Vol 14 (3) ◽  
pp. 178-182 ◽  
Author(s):  
TORU TAKAMATSU ◽  
YOSHIKI HASHIMOTO ◽  
MANABU YAMAGUCHI ◽  
TAKASHI KATAYAMA

2014 ◽  
Vol 754 ◽  
pp. 550-589 ◽  
Author(s):  
Rahul B. Karyappa ◽  
Shivraj D. Deshmukh ◽  
Rochish M. Thaokar

AbstractA conducting drop suspended in a viscous dielectric and subjected to a uniform DC electric field deforms to a steady-state shape when the electric stress and the viscous stress balance. Beyond a critical electric capillary number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ca}$, which is the ratio of the electric to the capillary stress, a drop undergoes breakup. Although the steady-state deformation is independent of the viscosity ratio $\lambda $ of the drop and the medium phase, the breakup itself is dependent upon $\lambda $ and $\mathit{Ca}$. We perform a detailed experimental and numerical analysis of the axisymmetric shape prior to breakup (ASPB), which explains that there are three different kinds of ASPB modes: the formation of lobes, pointed ends and non-pointed ends. The axisymmetric shapes undergo transformation into the non-axisymmetric shape at breakup (NASB) before disintegrating. It is found that the lobes, pointed ends and non-pointed ends observed in ASPB give way to NASB modes of charged lobes disintegration, regular jets (which can undergo a whipping instability) and open jets, respectively. A detailed experimental and numerical analysis of the ASPB modes is conducted that explains the origin of the experimentally observed NASB modes. Several interesting features are reported for each of the three axisymmetric and non-axisymmetric modes when a drop undergoes breakup.


2015 ◽  
Author(s):  
Satyabrata Mohanty ◽  
Kornel F. Ehmann ◽  
Jian Cao

In spite of its inherent advantages as a manufacturing tool, water-jet has not been extensively applied to the field of micro-manufacturing due to its low tolerance and poor control of the position of jet impingement. This paper explores the possibility of using the phenomenon of liquid dielectrophoresis to deflect and control the trajectory of a water jet in air. An approach is suggested using a localized non-uniform static electric field over a micro water jet with diameters in the range of 25–100 micrometers. The water jet has been modelled as a thin dielectric column and the numerical analysis of the electric field distribution has been carried out using COMSOL to analyze the generated forces and predict the scale of deflection of the jet. This unique approach of harnessing the polar nature of water using the phenomenon of dielectrophoresis might be useful in achieving fine control of the water jet’s trajectory especially in micro water jet material processing.


1997 ◽  
Vol 117 (11) ◽  
pp. 1109-1114
Author(s):  
Yoshiyuki Suda ◽  
Kenji Mutoh ◽  
Yosuke Sakai ◽  
Kiyotaka Matsuura ◽  
Norio Homma

Sign in / Sign up

Export Citation Format

Share Document