Mass-like band-gap creation in superconducting topological insulator due to mixed singlet and triplet states

2019 ◽  
Vol 31 (41) ◽  
pp. 415404
Author(s):  
M Khezerlou ◽  
H Goudarzi
Author(s):  
М. Гайсак ◽  
М. Гнатич ◽  
Ю. Федорняк

2018 ◽  
Vol 2 (10) ◽  
Author(s):  
K. Sumida ◽  
T. Natsumeda ◽  
K. Miyamoto ◽  
I. V. Silkin ◽  
K. Kuroda ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Zhang ◽  
Ryo Noguchi ◽  
Kenta Kuroda ◽  
Chun Lin ◽  
Kaishu Kawaguchi ◽  
...  

AbstractA quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs). However, the topological side surface is usually not cleavable and is thus hard to observe. Here, we visualize the topological states of the WTI candidate ZrTe5 by spin and angle-resolved photoemission spectroscopy (ARPES): a quasi-1D band with spin-momentum locking was revealed on the side surface. We further demonstrate that the bulk band gap is controlled by external strain, realizing a more stable WTI state or an ideal Dirac semimetal (DS) state. The highly directional spin-current and the tunable band gap in ZrTe5 will provide an excellent platform for applications.


2006 ◽  
Vol 429 (4-6) ◽  
pp. 365-370 ◽  
Author(s):  
Edmond P.F. Lee ◽  
John M. Dyke ◽  
Foo-tim Chau ◽  
Wan-ki Chow ◽  
Daniel K.W. Mok

2008 ◽  
Vol 07 (04) ◽  
pp. 805-820 ◽  
Author(s):  
XIANGZHU LI ◽  
JOSEF PALDUS

The reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, and which is further perturbatively corrected for the remaining (secondary) triples, RMR CCSD(T), is employed to compute the molecular geometry and the energy of the lowest-lying singlet and triplet states, as well as the corresponding singlet–triplet splitting, for all possible isomers of the m, n-pyridyne diradicals. A comparison is made with earlier results that were obtained by other authors, and the role of the multireference effects for both the geometry and the spin multiplicity of the lowest state, as described by the RMR-type methods, is demonstrated on the example of 2,6- and 3,5-pyridynes.


2000 ◽  
Vol 214-215 ◽  
pp. 832-836 ◽  
Author(s):  
O Homburg ◽  
P Michler ◽  
K Sebald ◽  
J Gutowski ◽  
H Wenisch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document