Angle-resolved spectral Fabry–Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

2017 ◽  
Vol 29 (1) ◽  
pp. 015006
Author(s):  
J T Dong ◽  
F Ji ◽  
H J Xia ◽  
Z J Liu ◽  
T D Zhang ◽  
...  
2016 ◽  
Vol 55 (23) ◽  
pp. 6285 ◽  
Author(s):  
Choonghwan Lee ◽  
Heejoo Choi ◽  
Jonghan Jin ◽  
Myoungsik Cha

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3717 ◽  
Author(s):  
Matej Njegovec ◽  
Denis Donlagic

This paper presents a method for gas concentration determination based on the measurement of the refractive index dispersion of a gas near the gas resonance in the near-infrared region (NIR). The gas refractive index dispersion line shape is reconstructed from the variation in the spectral interference fringes’ periods, which are generated by a low-finesse Fabry-Perot interferometer during the DFB diode’s linear-over-time optical frequency sweep around the gas resonance frequency. The entire sensing system was modeled and then verified experimentally, for an example of a low concentration methane-air mixture. We demonstrate experimentally a refractive index dispersion measurement resolution of 2 × 10−9 refractive index units (RIU), which corresponds to a change in methane concentration in air of 0.04 vol% at the resonant frequency of 181.285 THz (1653.7 nm). The experimental and modeling results show an excellent agreement. The presented system utilizes a very simple optical design and has good potential for the realization of cost-efficient gas sensors that can be operated remotely through standard telecom optical fibers.


2018 ◽  
Vol 36 (4) ◽  
pp. 1118-1124 ◽  
Author(s):  
Charusluk Viphavakit ◽  
Sinead O Keeffe ◽  
Minghong Yang ◽  
Stefan Andersson-Engels ◽  
Elfed Lewis

Author(s):  
Shuangxiu Yuan ◽  
Xuebo Sun ◽  
Jing Li ◽  
Yan Li ◽  
Fufang Su ◽  
...  

Abstract We experimentally and theoretically investigate Fano-like resonance in large-area Au/SiO2/Au nano-patches meta-structure, which is originating from the coupling between Fabry Perot resonance and magnetic dipole resonance modes. A highly sensitive refractive index sensor based on the lineshape analysis is obtained. The extracted wavelength shift with the amount of substance of Hg2+ changing from 10-3 pmol to 1 nmol has a linear dependence, and the sensitivity can reach to ultra-low limit of detection (LOD) as 10-3 pmol. This study may provide an approach for the development and modification in sensing.


2000 ◽  
Vol 76 (15) ◽  
pp. 1990-1992 ◽  
Author(s):  
Morio Takahashi ◽  
Yuichi Toriumi ◽  
Takahiro Matsumoto ◽  
Yasuaki Masumoto ◽  
Nobuyoshi Koshida

Sign in / Sign up

Export Citation Format

Share Document