Star sensor installation error calibration in stellar-inertial navigation system with a regularized backpropagation neural network

2018 ◽  
Vol 29 (8) ◽  
pp. 085102 ◽  
Author(s):  
Hao Zhang ◽  
Yanxiong Niu ◽  
Jiazhen Lu ◽  
Yanqiang Yang
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Sun ◽  
Wenjun Yi ◽  
Dandan Yuan ◽  
Jun Guan

The purpose of this paper is to present an in-flight initial alignment method for the guided projectiles, obtained after launching, and utilizing the characteristic of the inertial device of a strapdown inertial navigation system. This method uses an Elman neural network algorithm, optimized by genetic algorithm in the initial alignment calculation. The algorithm is discussed in details and applied to the initial alignment process of the proposed guided projectile. Simulation results show the advantages of the optimized Elman neural network algorithm for the initial alignment problem of the strapdown inertial navigation system. It can not only obtain the same high-precision alignment as the traditional Kalman filter but also improve the real-time performance of the system.


2012 ◽  
Vol 566 ◽  
pp. 235-238
Author(s):  
Guang Tao Zhou ◽  
Gui Min Shi ◽  
Lei Zhang ◽  
Kai Li

In the strapdown inertial navigation system (SINS), gyro drift will result in navigation errors. A new algorithm based on star sensor is proposed in this paper to estimate gyro drift. The paper analyzed the working principle of star sensor and the technique of estimating gyro drift. Gyro drift can be estimated through the high-precision attitude information provided by a star sensor. Kalman filter is used in the integrated navigation model. Simulation results show that the proposed algorithm can estimate gyro drift accurately and improve the precision of SINS.


2012 ◽  
Vol 182-183 ◽  
pp. 1090-1094
Author(s):  
Wei Gao ◽  
Lei Zhang

In inertial navigation system, gyro is used to measure the angular velocity of carrier relative to inertial space for achieve attitude matrix updated in real time. Gyro difficult to eliminate the error, results in strapdown inertial navigation system precision decrease with time. Star sensor is a high-precision attitude measuring instrument and don’t require any priori information, the attitude date can be provided by star sensor. Thus, gyro is simulated by star sensor in order to improve the precision of strapdown inertial navigation system.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Bo ◽  
Yang Xiaogang ◽  
Qu Geping ◽  
Wang Yongjun

A method of accurate integrated navigation for high-altitude aerocraft by medium precision strapdown inertial navigation system (SINS), star sensor, and global navigation satellite system (GNSS) is researched in this paper. The system error sources of SINS and star sensor are analyzed and modeled, and then system errors of SINS and star sensor are chosen as system states of integrated navigation. Considering that the output of star sensor is attitude quaternion, it can be regarded as an attitude matrix, then the equivalent attitude matrix is constructed by using the output of SINS, and the calculating equation of the equivalent attitude matrix is designed. Thus, one of the measurements of integrated navigation can be constructed by using the equivalent attitude matrix and the attitude matrix output of star sensor. According to the constraint conditions of the attitude matrix, the diagonal elements are selected as one of the measurements of integrated navigation, and the corresponding measurement equation is derived. At the same time, the velocity output and position output difference between SINS and GNSS is selected as the other measurement, and the corresponding measurement equation is also derived. On this basis, the Kalman filter is used to design an integrated navigation filtering algorithm. Simulation results show that although the medium precision SINS is used, the heading accuracy of this integrated navigation method is better than ±1.5′, the pitch and roll accuracy are better than ±0.9’, the velocity accuracy is better than ±0.05 m/s, and the position accuracy is better than ±3.8 m. Therefore, the integrated navigation effect is very significant.


Sign in / Sign up

Export Citation Format

Share Document