Energy quadratization Runge-Kutta method for the modified phase field crystal equation

Author(s):  
Jaemin Shin ◽  
Hyun Geun Lee ◽  
June-Yub Lee

Abstract In this paper, we propose high order and unconditionally energy stable methods for a modified phase field crystal equation by applying the strategy of the energy quadratization Runge–Kutta methods. We transform the original model into an equivalent system with auxiliary variables and quadratic free energy. The modified system preserves the laws of mass conservation and energy dissipation with the associated energy functional. We present rigorous proofs of the mass conservation and energy dissipation properties of the proposed numerical methods and present numerical experiments conducted to demonstrate their accuracy and energy stability. Finally, we compare long-term simulations using an indicator function to characterize the pattern formation.

Author(s):  
Beibei Zhu ◽  
Zhenxuan Hu ◽  
Yifa Tang ◽  
Ruili Zhang

We apply a second-order symmetric Runge–Kutta method and a second-order symplectic Runge–Kutta method directly to the gyrocenter dynamics which can be expressed as a noncanonical Hamiltonian system. The numerical simulation results show the overwhelming superiorities of the two methods over a higher order nonsymmetric nonsymplectic Runge–Kutta method in long-term numerical accuracy and near energy conservation. Furthermore, they are much faster than the midpoint rule applied to the canonicalized system to reach given precision.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.


Sign in / Sign up

Export Citation Format

Share Document