scholarly journals Dual-source photon counting detector CT with a tin filter: a phantom study on iodine quantification performance

2019 ◽  
Vol 64 (11) ◽  
pp. 115019 ◽  
Author(s):  
Ashley Tao ◽  
Richard Huang ◽  
Shengzhen Tao ◽  
Gregory J Michalak ◽  
Cynthia H McCollough ◽  
...  
2019 ◽  
Vol 46 (9) ◽  
pp. 4105-4115 ◽  
Author(s):  
Shengzhen Tao ◽  
Kishore Rajendran ◽  
Cynthia H. McCollough ◽  
Shuai Leng

2020 ◽  
Vol 65 (17) ◽  
pp. 17NT01
Author(s):  
Shengzhen Tao ◽  
Jeffrey F Marsh ◽  
Ashley Tao ◽  
Greg J Michalak ◽  
Kishore Rajendran ◽  
...  

Author(s):  
Stefanie J. Bette ◽  
Franziska M. Braun ◽  
Mark Haerting ◽  
Josua A. Decker ◽  
Jan H. Luitjens ◽  
...  

Abstract Objectives Photon-counting detector CT (PCD-CT) promises a leap in spatial resolution due to smaller detector pixel sizes than implemented in energy-integrating detector CTs (EID-CT). Our objective was to compare the visualization of smallest bone details between PCD-CT and EID-CT using a mouse as a specimen. Materials and methods Two euthanized mice were scanned at a 20-slice EID-CT and a dual-source PCD-CT in single-pixel mode at various CTDIVol values. Image noise and signal-to-noise ratio (SNR) were evaluated using repeated ROI measurements. Edge sharpness of bones was compared by the maximal slope within CT value plots along sampling lines intersecting predefined bones of the spine. Two readers evaluated bone detail visualization at four regions of the spine on a three-point Likert scale at various CTDIVol’s. Two radiologists selected the series with better detail visualization among each of 20 SNR-matched pairs of EID-CT and PCD-CT series. Results In CTDIVol-matched scans, PCD-CT series showed significantly lower image noise (NoiseCTDI=5 mGy: 16.27 ± 1.39 vs. 23.46 ± 0.96 HU, p < 0.01), higher SNR (SNRCTDI=5 mGy: 20.57 ± 1.89 vs. 14.00 ± 0.66, p < 0.01), and higher edge sharpness (Edge Slopelumbar spine: 981 ± 160 vs. 608 ± 146 HU/mm, p < 0.01) than EID-CT series. Two radiologists considered the delineation of bone details as feasible at consistently lower CTDIVol values at PCD-CT than at EID-CT. In comparison of SNR-matched reconstructions, PCD-CT series were still considered superior in almost all cases. Conclusions In this head-to-head comparison, PCD-CT showed superior objective and subjective image quality characteristics over EID-CT for the delineation of tiniest bone details. Even in SNR-matched pairs (acquired at different CTDIVol’s), PCD-CT was strongly preferred by radiologists. Key Points • In dose-matched scans, photon-counting detector CT series showed significantly less image noise, higher signal-to-noise ratio, and higher edge sharpness than energy-integrating detector CT series. • Human observers considered the delineation of tiny bone details as feasible at much lower dose levels in photon-counting detector CT than in energy-integrating detector CT. • In direct comparison of series matched for signal-to-noise ratio, photon-counting detector CT series were considered superior in almost all cases.


2020 ◽  
Vol 55 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Kishore Rajendran ◽  
Benjamin A. Voss ◽  
Wei Zhou ◽  
Shengzhen Tao ◽  
David R. DeLone ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1708
Author(s):  
Matthias Eberhard ◽  
Victor Mergen ◽  
Kai Higashigaito ◽  
Thomas Allmendinger ◽  
Robert Manka ◽  
...  

We evaluated the accuracy of coronary artery calcium (CAC) scoring on a dual-source photon-counting detector CT (PCD-CT). An anthropomorphic chest phantom underwent ECG-gated sequential scanning on a PCD-CT at 120 kV with four radiation dose levels (CTDIvol, 2.0–8.6 mGy). Polychromatic images at 120 kV (T3D) and virtual monoenergetic images (VMI), from 60 to 75 keV without quantum iterative reconstruction (no QIR) and QIR strength levels 1–4, were reconstructed. For reference, the same phantom was scanned on a conventional energy-integrating detector CT (120 kV; filtered back projection) at identical radiation doses. CAC scoring in 20 patients with PCD-CT (120 kV; no QIR and QIR 1–4) were included. In the phantom, there were no differences between CAC scores of different radiation doses (all, p > 0.05). Images with 70 keV, no QIR (CAC score, 649); 65 keV, QIR 3 (656); 65 keV; QIR4 (648) and T3D, QIR4 (656) showed a <1% deviation to the reference (653). CAC scores significantly decreased at increasing QIR levels (all, p < 0.001) and for each 5 keV-increase (all, p < 0.001). Patient data (median CAC score: 86 [inter-quartile range: 38–978] at 70 keV) confirmed relationships and differences between reconstructions from the phantom. First phantom and in-vivo experience with a clinical dual-source PCD-CT system shows accurate CAC scoring with VMI reconstructions at different radiation dose levels.


Author(s):  
S. Sawall ◽  
L. Klein ◽  
E. Wehrse ◽  
L. T. Rotkopf ◽  
C. Amato ◽  
...  

Abstract Objective To evaluate the dual-energy (DE) performance and spectral separation with respect to iodine imaging in a photon-counting CT (PCCT) and compare it to dual-source CT (DSCT) DE imaging. Methods A semi-anthropomorphic phantom extendable with fat rings equipped with iodine vials is measured in an experimental PCCT. The system comprises a PC detector with two energy bins (20 keV, T) and (T, eU) with threshold T and tube voltage U. Measurements using the PCCT are performed at all available tube voltages (80 to 140 kV) and threshold settings (50–90 keV). Further measurements are performed using a conventional energy-integrating DSCT. Spectral separation is quantified as the relative contrast media ratio R between the energy bins and low/high images. Image noise and dose-normalized contrast-to-noise ratio (CNRD) are evaluated in resulting iodine images. All results are validated in a post-mortem angiography study. Results R of the PC detector varies between 1.2 and 2.6 and increases with higher thresholds and higher tube voltage. Reference R of the EI DSCT is found as 2.20 on average overall phantoms. Maximum CNRD in iodine images is found for T = 60/65/70/70 keV for 80/100/120/140 kV. The highest CNRD of the PCCT is obtained using 140 kV and is decreasing with decreasing tube voltage. All results could be confirmed in the post-mortem angiography study. Conclusion Intrinsically acquired DE data are able to provide iodine images similar to conventional DSCT. However, PCCT thresholds should be chosen with respect to tube voltage to maximize image quality in retrospectively derived image sets. Key Points • Photon-counting CT allows for the computation of iodine images with similar quality compared to conventional dual-source dual-energy CT. • Thresholds should be chosen as a function of the tube voltage to maximize iodine contrast-to-noise ratio in derived image sets. • Image quality of retrospectively computed image sets can be maximized using optimized threshold settings.


Sign in / Sign up

Export Citation Format

Share Document