Robust wave-feature adaptive heartbeat classification based on self-attention mechanism using a transformer model

Author(s):  
Shuaicong Hu ◽  
Wenjie Cai ◽  
Tijie Gao ◽  
Jiajun Zhou ◽  
Mingjie Wang

Abstract Objective: Electrocardiography is a common method for screening cardiovascular diseases. Accurate heartbeat classification assists in diagnosis and has attracted great attention. In this paper, we proposed an automatic heartbeat classification method based on a transformer neural network using a self-attention mechanism. Approach: An adaptive heartbeat segmentation method was designed to selectively focus on the time-dependent representation of heartbeats. A one-dimensional convolution layer was used to embed wave characteristics into symbolic representations, and then, a transformer block using multi-head attention was applied to deal with the dependence of wave-embedding. The model was trained and evaluated using the MIT-BIH arrhythmia database (MIT-DB). To improve the model performance, the model pre-trained on MIT-BIH supraventricular arrhythmia database (MIT-SVDB) was used and fine-tuned on MIT-DB. Main results: The proposed method was verified using the MIT-DB for two groups. In the first group, our method attained F1 scores of 0.86 and 0.96 for the supraventricular ectopic beat (SVEB) class and ventricular ectopic beat (VEB) class, respectively. In the second group, our method achieved an average F1 value of 99.83% and better results than other state-of-the-art methods. Significance: We proposed a novel heartbeat classification method based on a transformer model. This method provides a new solution for real-time electrocardiogram heartbeat classification, which can be applied to wearable devices.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dengqing Zhang ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
Shengyi Ye ◽  
Wenyu Cai ◽  
...  

The electrocardiogram (ECG) is one of the most powerful tools used in hospitals to analyze the cardiovascular status and check health, a standard for detecting and diagnosing abnormal heart rhythms. In recent years, cardiovascular health has attracted much attention. However, traditional doctors’ consultations have disadvantages such as delayed diagnosis and high misdiagnosis rate, while cardiovascular diseases have the characteristics of early diagnosis, early treatment, and early recovery. Therefore, it is essential to reduce the misdiagnosis rate of heart disease. Our work is based on five different types of ECG arrhythmia classified according to the AAMI EC57 standard, namely, nonectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beat. This paper proposed a high-accuracy ECG arrhythmia classification method based on convolutional neural network (CNN), which could accurately classify ECG signals. We evaluated the classification effect of this classification method on the supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB) based on the MIT-BIH arrhythmia database. According to the results, the proposed method achieved 99.8% accuracy, 98.4% sensitivity, 99.9% specificity, and 98.5% positive prediction rate for detecting VEB. Detection of SVEB achieved 99.7% accuracy, 92.1% sensitivity, 99.9% specificity, and 96.8% positive prediction rate.


2019 ◽  
Vol 40 (5) ◽  
pp. 055002 ◽  
Author(s):  
Qichen Li ◽  
Chengyu Liu ◽  
Qiao Li ◽  
Supreeth P Shashikumar ◽  
Shamim Nemati ◽  
...  

2014 ◽  
Vol 73 (Suppl 2) ◽  
pp. 96.1-96
Author(s):  
G. De Luca ◽  
S. Bosello ◽  
F. Parisi ◽  
G. Berardi ◽  
M. Rucco ◽  
...  

2021 ◽  
Vol 9 ◽  
pp. 570-585
Author(s):  
Lisa Anne Hendricks ◽  
John Mellor ◽  
Rosalia Schneider ◽  
Jean-Baptiste Alayrac ◽  
Aida Nematzadeh

Abstract Recently, multimodal transformer models have gained popularity because their performance on downstream tasks suggests they learn rich visual-linguistic representations. Focusing on zero-shot image retrieval tasks, we study three important factors that can impact the quality of learned representations: pretraining data, the attention mechanism, and loss functions. By pretraining models on six datasets, we observe that dataset noise and language similarity to our downstream task are important indicators of model performance. Through architectural analysis, we learn that models with a multimodal attention mechanism can outperform deeper models with modality-specific attention mechanisms. Finally, we show that successful contrastive losses used in the self-supervised learning literature do not yield similar performance gains when used in multimodal transformers.


2021 ◽  
Vol 33 (7) ◽  
pp. 991-999
Author(s):  
Baoqi Zhao ◽  
Fei Yu ◽  
Junmei Sun ◽  
Xiumei Li ◽  
Long Yuan ◽  
...  

2021 ◽  
Vol 2138 (1) ◽  
pp. 012016
Author(s):  
Shuangling Zhu ◽  
Guli Nazi·Aili Mujiang ◽  
Huxidan Jumahong ◽  
Pazi Laiti·Nuer Maiti

Abstract A U-Net convolutional network structure is fully capable of completing the end-to-end training with extremely little data, and can achieve better results. When the convolutional network has a short link between a near input layer and a near output layer, it can implement training in a deeper, more accurate and effective way. This paper mainly proposes a high-resolution remote sensing image change detection algorithm based on dense convolutional channel attention mechanism. The detection algorithm uses U-Net network module as the basic network to extract features, combines Dense-Net dense module to enhance U-Net, and introduces dense convolution channel attention mechanism into the basic convolution unit to highlight important features, thus completing semantic segmentation of dense convolutional remote sensing images. Simulation results have verified the effectiveness and robustness of this study.


Sign in / Sign up

Export Citation Format

Share Document