Spherical plasma focus operated with nitrogen and neon gases for soft x-rays (Bremsstrahlung radiation, line radiation, and radiative recombination)

Author(s):  
Yasar Ay
2020 ◽  
Vol 46 (10) ◽  
pp. 978-991
Author(s):  
S. F. Garanin ◽  
V. Yu. Dolinskii ◽  
N. G. Makeev ◽  
V. I. Mamyshev ◽  
V. V. Maslov

2015 ◽  
Vol 69 (9) ◽  
Author(s):  
Yasar Ay ◽  
Mohamed A. Abd Al-Halim ◽  
Mohamed A. Bourham

2002 ◽  
Vol 16 (09) ◽  
pp. 309-318 ◽  
Author(s):  
M. SHAFIQ ◽  
SARTAJ ◽  
S. HUSSAIN ◽  
M. SHARIF ◽  
S. AHMAD ◽  
...  

A study of soft X-ray emission in the 1.0–1.5 keV energy range from a low energy (1.15 kJ) plasma focus has been conducted. X-rays are detected with the combination of Quantrad Si PIN-diodes masked with Al (50 μm), Mg (100 μm) and Ni (17.5 μm) filters and with a pinhole camera. The X-ray flux is found to be measurable within the pressure range of 0.1–1.0 mbar nitrogen. In the 1.0–1.3 keV and 1.0–1.5 keV windows, the X-ray yield in 4π-geometry is 1.03 J and 14.0-J, respectively, at a filling pressure of 0.25 mbar and the corresponding efficiencies are 0.04% and 1.22%. The total X-ray emission in 4π-geometry is 21.8 J, which corresponds to the system efficiency of about 1.9%. The X-ray emission is found dominantly as a result of the interaction of energetic electrons in the current sheath with the anode tip. Images recorded by the pinhole camera confirm the emission of X-rays from the tip of the anode.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950097 ◽  
Author(s):  
Yasar Ay

The developed spherical plasma focus model is used in this study to investigate the optimum neutron yield in terms of the gas pressure, cathode radius and external inductance. The optimum values for these parameters are found separately. Then, the charging voltage is varied from 25[Formula: see text]kV to 35[Formula: see text]kV with 1[Formula: see text]kV increment by using these separately found optimum values to see the rate of increase in neutron yield. While the used gas pressure range is 1–40[Formula: see text]Torr with 1[Formula: see text]Torr increment, cathode radius range is 11.5–17[Formula: see text]cm with 0.5[Formula: see text]cm increment. External inductance is varied from 10[Formula: see text]nH to 150[Formula: see text]nH with 5[Formula: see text]nH increment. The optimum values for gas pressure, cathode radius and external inductance are found to be 26[Formula: see text]Torr, 15[Formula: see text]cm and 75[Formula: see text]nH, respectively. Even though combining these separately found optimum values of pressure, cathode radius and external inductance does not necessarily form an optimized set of operational conditions for the SPF, they lead to a higher neutron yield in that while neutron yield with these separately found optimum values at 25[Formula: see text]kV charging voltage is [Formula: see text] (higher than the measured neutron yield of [Formula: see text] at 25[Formula: see text]kV), it increases to [Formula: see text], when charging voltage is increased to 35[Formula: see text]kV. Using these values shows that spherical plasma focus device can be used as a neutron source with high neutron yield (on the order of [Formula: see text]).


Sign in / Sign up

Export Citation Format

Share Document