bremsstrahlung radiation
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 24 (1) ◽  
pp. 013020
Author(s):  
S P Roshchupkin ◽  
A V Dubov ◽  
V V Dubov ◽  
S S Starodub

Abstract Theoretically predicted fundamental features in the process of resonant spontaneous bremsstrahlung radiation during the scattering of ultrarelativistic electrons with energies of the order ∼ 100 GeV by the nuclei in strong laser fields with intensities up to I ∼ 1024 W cm−2. Under resonant conditions, an intermediate electron in the wave field enters the mass shell. As a result, the initial second-order process by the fine structure constant is effectively reduced to two first-order processes: laser-stimulated Compton effect and laser-assisted Mott process. The resonant kinematics for two reaction channels (A and B) is studied in detail. An analytical resonant differential cross-section with simultaneous registration of the frequency and the outgoing angle of a spontaneous gamma-quantum for channels A and B is obtained. The resonant differential cross section takes the largest value with a small number of absorbed laser photons. In this case, the resonant cross-section is determined by one parameter, depending on the small transmitted momenta, as well as the resonance width. In strong fields, spontaneous gamma quanta of small energies are most likely to be emitted compared to the energy of the initial electrons. At the same time, the angular width of the radiation of such gamma quanta is the largest. With an increase in the number of absorbed laser photons, the resonant cross-section decreases quite quickly, and the resonant frequency of spontaneous gamma quanta increases. It is shown that the resonant differential cross-section has the largest value in the region of average laser fields (I ∼ 1018 W cm−2) and can be of the order of ∼ 1 0 19 in units Z 2 α r e 2 . With an increase in the intensity of the laser wave, the value of the resonant differential cross-section R r e s max decreases and for the intensity I ∼ 1024 W cm−2 is R r e s max ≲ 1 0 7 in units Z 2 α r e 2 . The obtained results reveal new features of spontaneous emission of ultrarelativistic electrons on nuclei in strong laser fields and can be tested at international laser installations.


2021 ◽  
Author(s):  
Daniel Deidda ◽  
Ana M. Denis-Bacelar ◽  
Andrew J. Fenwick ◽  
Kelley M. Ferreira ◽  
Warda Heetun ◽  
...  

Abstract Background: Selective internal radiation therapy with Yttrium-90 microspheres is an effective therapy for liver cancer and liver metastases. Yttrium-90 is mainly a high-energy beta particle emitter. These beta particles emit Bremsstrahlung radiation during their interaction with tissue making post-therapy imaging of the radioactivity distribution feasible. Nevertheless, image quality and quantification is difficult due to the continuous energy spectrum which makes resolution modelling, and attenuation and scatter estimation challenging. Methods: In this study, a modified hybrid kernelised expectation maximisation is used to improve resolution and contrast and reduce noise. The iterative part of the kernel was frozen at the 72nd sub-iteration to avoid over-fitting of noise and background. A NEMA phantom with spherical inserts was used for the optimisation and validation of the algorithm, and data from 5 patients treated with Selective internal radiation therapy were used as proof of clinical relevance of the method. Results: The results suggest a maximum improvement of 56% for region of interest mean recovery coefficient at fixed coefficient of variation and better identification of the hot volumes in the NEMA phantom. Similar improvements were achieved with patient data, showing 47% mean value improvement over the gold standard used in hospitals. Conclusions: Such quantitative improvements could facilitate improved dosimetry calculations with SPECT when treating patients with Selective internal radiation therapy, as well as provide a more visible position of the cancerous lesions in the liver.


2021 ◽  
pp. 201-205
Author(s):  
R.I. Pomatsalyuk ◽  
V.A. Shevchenko ◽  
D.V. Titov ◽  
A.Eh. Tenishev ◽  
V.L. Uvarov ◽  
...  

When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is trans-formed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irra-diated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of sec-ondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial pro-grams like radiation tests, sanitization of archival materials and cultural heritage objects, etc.


2021 ◽  
pp. 26-29
Author(s):  
N.P. Dikiy ◽  
Yu.V. Lyashko ◽  
E.P. Medvedeva ◽  
D.V. Medvedev

The comparison of the catalytic activity of the initial and activated by bremsstrahlung -radiation on a high-current electron accelerator of zirconium dioxide nanoparticles on the nature of the conversion of ethanol. The used -activation parameters contributed to the formation of a more perfect crystal structure of ZrO2 nanoparticles. It was shown that when using -activated ZrO2 nanoparticles as a catalyst, the yield of hydrocarbon products during the conversion of ethanol was several times higher than the yield of the same products in the case of using the initial ZrO2 nanoparticles. The mechanism of such a conversion of ethanol can be associated with the synergism of large ionization losses of Auger electrons and the effect of highly reactive products involved in heterogeneous catalysis.


2021 ◽  
pp. 3-7
Author(s):  
N.P. Dikiy ◽  
A.A. Zakharchenko ◽  
Yu.V. Lyashko ◽  
V.L. Uvarov ◽  
V.A. Shevchenko ◽  
...  

Experimental testing of a novel technique for determination of width and maximum of excitation function of a photonuclear reaction with dominant giant dipole resonance is conducted. The method is based on measurement of normalized reaction yield in a thin target, overlapping entirely a flux of X-rays and on processing of data obtained with the use of a developed analytical model. For the checking of method, the nickel and molybdenum foils of natural isotopic composition were activated by bremsstrahlung radiation at four energies of the electron beam in the range 40…95 MeV. The obtained parameters of cross-section of the reference reactions 58Ni(γ,n)57Ni and 100Mo(γ,n)99Mo are in good agreement with those presented in the available databases.


2021 ◽  
Vol 20 (3) ◽  
pp. 77-96
Author(s):  
S. V. Tsaplin ◽  
S. A. Bolychev

The paper presents the results of a calculation aimed to study the influence of ionizing, bremsstrahlung radiation on the operation of a nanosatellite obtained during the implementation of the project 0777-2020-0018 in 2020. A comparative analysis of the results of calculating the specific ionization and radiation energy losses of protons (from 0.1 to 400 MeV) and electrons (from 0.04 to 7 MeV), as well as their path lengths in aluminum according to the formulas of various authors and the database of materials of the National Institute of Standards and Technologies is presented. Based on the analysis results, the annual dose in the aluminum structure of the SamSat ION nanosatellite in a circular sun-synchronous orbit (SSO) is calculated. All calculations are based on the data of the energy spectra of protons and electrons of the SSO given in the Information system Spenvis of the European Space Agency. The results of calculating the integral fluxes in aluminum under the action of protons and electrons of a circular SSO for different thicknesses are obtained, and the fraction of passed particles is shown in the approximation of a single-layer stack. The radiation resistance of the electronic elements ISL70321SEH, ISL73321SEH and Virtex-4QV, Virtex-5QV included in the SamSat ION avionics and its ability to operate during a year was assessed.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
S.V. Tsaplin ◽  
◽  
S.A. Bolychev ◽  

The paper presents the results of a calculation to study the influence of ionizing, bremsstrahlung radiation on the functioning of a nanosatellite. A comparative analysis of the results of calculating the specific ionization and radiation energy losses of protons (from 0.1 to 400 MeV) and electrons (from 0.04 to 7 MeV), as well as their path lengths in aluminum according to the formulas of various authors and the database of materials of the National Institute of Standards and Technologies is presented. Based on the analysis results, the annual dose in the aluminum structure of the SamSat-ION nanosatellite in a circular sun-synchronous orbit (SSO) is calculated. All calculations are based on the data of the energy spectra of protons and electrons of the SSO given in the "Information system Spenvis of the European Space Agency". The results of calculating the integral fluxes in aluminum under the action of protons and electrons of a circular SSO for different thicknesses are obtained, and the fraction of passed particles is shown in the approximation of a single-layer stack. Estimation of the radiation resistance of the electronic elements ISL70321SEH, ISL73321SEH and Virtex - 4QV, Virtex -5QV included in the SamSat - ION in the approximation of a double-layer stack was made for various thickness of Si and its ability to operate during the year.


2021 ◽  
Vol 38 (04) ◽  
pp. 460-465
Author(s):  
Mitchell Rice ◽  
Matthew Krosin ◽  
Paul Haste

AbstractTransarterial radioembolization with yttrium-90 (90Y) is a mainstay for the treatment of liver cancer. Imaging the distribution following delivery is a concept that dates back to the 1960s. As β particles are created during 90Y decay, bremsstrahlung radiation is created as the particles interact with tissues, allowing for imaging with a gamma camera. Inherent qualities of bremsstrahlung radiation make its imaging difficult. SPECT and SPECT/CT can be used but suffer from limitations related to low signal-to-noise bremsstrahlung radiation. However, with optimized imaging protocols, clinically adequate images can still be obtained. A finite but detectable number of positrons are also emitted during 90Y decay, and many studies have demonstrated the ability of commercial PET/CT and PET/MR scanners to image these positrons to understand 90Y distribution and help quantify dose. PET imaging has been proven to be superior to SPECT for quantitative imaging, and therefore will play an important role going forward as we try and better understand dose/response and dose/toxicity relationships to optimize personalized dosimetry. The availability of PET imaging will likely remain the biggest barrier to its use in routine post-90Y imaging; thus, SPECT/CT imaging with optimized protocols should be sufficient for most posttherapy subjective imaging.


2021 ◽  
Vol 30 (4) ◽  
pp. 04LT01
Author(s):  
Petr Bílek ◽  
Ján Tungli ◽  
Tomáš Hoder ◽  
Milan Šimek ◽  
Zdeněk Bonaventura

Sign in / Sign up

Export Citation Format

Share Document