Trapped upper hybrid waves as eigenmodes of non-monotonic background density profiles

Author(s):  
Mads Givskov Senstius ◽  
S Kragh Nielsen ◽  
Roddy G L Vann
2014 ◽  
Vol 92 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Ehsan Khavasi ◽  
Bahar Firoozabadi ◽  
Hossein Afshin

Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes and have an important role in the mixing process. In this work, the linear stability analysis in the temporal framework is used to study the stability characteristics of a particle-laden stratified two-layer flow for two different background density profiles: smooth (hyperbolic tangent) and piecewise linear. The effect of parameters, such as bed slope, viscosity, and particle size, on the stability is also considered. The pseudospectral collocation method employing Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, there are some differences in the stability characteristics of the two density profiles. In the case of R = 1 (R is the ratio of the shear layer thickness to the density layer thickness), the stability boundary in smooth profile is the transition from the unstable flow (where the dominant unstable mode is Kelvin–Helmholtz) to the stable one where in the piecewise linear profile this boundary is the transition from Kelvin–Helmholtz to the Holmboe mode. It is also shown that the unstable region increases with the bed slope and unstable modes amplify as the bed slope increases. For R = 5 the flow does not become stable by increasing the stratification in nonzero bed slope, and in some wavenumbers the Kelvin–Helmholtz and Holmboe modes coexist. In addition, by increasing the bed slope the growth rate of the Holmboe mode and the range of its existence decrease. As expected, the viscosity makes the current more stable, and for large values of the viscosity (small Reynolds number) the flow becomes stable at long waves (small wave numbers) for all bulk Richardson numbers. Existence of small particles does not change the instability characteristics so much, however, large particles make the flow more unstable.


2015 ◽  
Vol 10 (0) ◽  
pp. 1202082-1202082 ◽  
Author(s):  
Hiro TOGASHI ◽  
Akira EJIRI ◽  
Hiroto HOMMA ◽  
Takahiro SHINYA ◽  
Yuichi TAKASE ◽  
...  

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-767-C7-768
Author(s):  
R. Benattar ◽  
C. Popovics ◽  
R. Sigel ◽  
J. Virmont

Author(s):  
Yingtian Chen ◽  
Hui Li ◽  
Mark Vogelsberger

Abstract We perform a suite of hydrodynamic simulations to investigate how initial density profiles of giant molecular clouds (GMCs) affect their subsequent evolution. We find that the star formation duration and integrated star formation efficiency of the whole clouds are not sensitive to the choice of different profiles but are mainly controlled by the interplay between gravitational collapse and stellar feedback. Despite this similarity, GMCs with different profiles show dramatically different modes of star formation. For shallower profiles, GMCs first fragment into many self-gravitation cores and form sub-clusters that distributed throughout the entire clouds. These sub-clusters are later assembled ‘hierarchically’ to central clusters. In contrast, for steeper profiles, a massive cluster is quickly formed at the center of the cloud and then gradually grows its mass via gas accretion. Consequently, central clusters that emerged from clouds with shallower profiles are less massive and show less rotation than those with the steeper profiles. This is because 1) a significant fraction of mass and angular momentum in shallower profiles is stored in the orbital motion of the sub-clusters that are not able to merge into the central clusters 2) frequent hierarchical mergers in the shallower profiles lead to further losses of mass and angular momentum via violent relaxation and tidal disruption. Encouragingly, the degree of cluster rotations in steeper profiles is consistent with recent observations of young and intermediate-age clusters. We speculate that rotating globular clusters are likely formed via an ‘accretion’ mode from centrally-concentrated clouds in the early Universe.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 242
Author(s):  
Joanna Halun ◽  
Pawel Karbowniczek ◽  
Piotr Kuterba ◽  
Zoriana Danel

The calculations of the dimensionless layer monomer density profiles for a dilute solution of phantom ideal ring polymer chains and star polymers with f=4 arms in a Θ-solvent confined in a slit geometry of two parallel walls with repulsive surfaces and for the mixed case of one repulsive and the other inert surface were performed. Furthermore, taking into account the Derjaguin approximation, the dimensionless layer monomer density profiles for phantom ideal ring polymer chains and star polymers immersed in a solution of big colloidal particles with different adsorbing or repelling properties with respect to polymers were calculated. The density-force relation for the above-mentioned cases was analyzed, and the universal amplitude ratio B was obtained. Taking into account the small sphere expansion allowed obtaining the monomer density profiles for a dilute solution of phantom ideal ring polymers immersed in a solution of small spherical particles, or nano-particles of finite size, which are much smaller than the polymer size and the other characteristic mesoscopic length of the system. We performed molecular dynamics simulations of a dilute solution of linear, ring, and star-shaped polymers with N=300, 300 (360), and 1201 (4 × 300 + 1-star polymer with four arms) beads accordingly. The obtained analytical and numerical results for phantom ring and star polymers are compared with the results for linear polymer chains in confined geometries.


2021 ◽  
Vol 918 ◽  
Author(s):  
Sorush Omidvar ◽  
Mohammadreza Davoodi ◽  
C. Brock Woodson

Abstract


2021 ◽  
Vol 92 (4) ◽  
pp. 043525
Author(s):  
D. H. Edgell ◽  
A. M. Hansen ◽  
J. Katz ◽  
D. Turnbull ◽  
D. H. Froula

Sign in / Sign up

Export Citation Format

Share Document