Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

2018 ◽  
Vol 27 (4) ◽  
pp. 045014 ◽  
Author(s):  
Baiyang Ren ◽  
Cliff J Lissenden
2019 ◽  
Vol 19 (2) ◽  
pp. 357-372 ◽  
Author(s):  
Lingfang Li ◽  
Mohammad Faisal Haider ◽  
Hanfei Mei ◽  
Victor Giurgiutiu ◽  
Yong Xia

The guided wave technique is commonly used in the health monitoring of thin-walled structures because the guided waves can propagate far in the structures without much energy loss. However, understanding of the wave propagation in bounded layered structures is still lacking. In this study, the Lamb wave field of single- and multi-layer plates excited by surface-mounted piezoelectric wafer active sensors is theoretically analyzed using the normal mode expansion method, which is based on the elastodynamic reciprocity relation and utilizes the orthogonality relations of the Lamb wave modes. The mode participation factors of Lamb wave in single- and multi-layer isotropic plates are derived. The time domain responses are obtained through the inverse Fourier transform of the structural response spectrum, which is obtained by multiplying the transfer function with the excitation frequency spectrum. The developed normal mode expansion method is first applied to an aluminum single-layer plate. The obtained analytical tuning curves and out-of-plane velocity of the plate are in good agreement with the numerical and experimental results. Finally, the analytical wave responses of an aluminum–adhesive–steel triple-layer plate are verified through comparison with the finite element analysis and experiment. The proposed normal mode expansion method provides a reliable and accurate calculation of the wave field in single- and multi-layer plates.


Author(s):  
Ju Ding ◽  
Min Zhang ◽  
Shu-Hong Liu ◽  
Chen-huai Tang ◽  
Jie-Lu Wang ◽  
...  

Ultrasonic guided wave inspection technology has been widely for long distance pipeline inspection; however, the pipe elbow’s discontinuous structure and the dispersion of L-type wave are restricting the application of this technology. This paper proposes a method of L(0,2) mode guided wave excitation based on magnetostrictive effect and explores the optimization of the magnetization sensor arrangement. Test results shows that the proposed method can detect many types of defects in the pipe elbow. This paper encourages the use of L(0,2) mode guided wave excitation based on magnetostrictive effect in pipeline site inspections.


2020 ◽  
Vol 238 ◽  
pp. 05008
Author(s):  
Rémi Colom ◽  
Felix Binkowski ◽  
Fridtjof Betz ◽  
Martin Hammerschmidt ◽  
Lin Zschiedrich ◽  
...  

Many nanophotonic devices rely on the excitation of photonic resonances to enhance light-matter interaction. The understanding of the resonances is therefore of a key importance to facilitate the design of such devices. These resonances may be analyzed by use of the quasi-normal mode (QNM) theory. Here, we illustrate how QNM analysis may help study and design resonant nanophotonic devices. We will in particular use the QNM expansion of far-field quantities based on Riesz projection to design optical antennas.


2010 ◽  
Vol 21 (16) ◽  
pp. 1617-1625 ◽  
Author(s):  
Evgeny Glushkov ◽  
Natalia Glushkova ◽  
Oleg Kvasha ◽  
Dominik Kern ◽  
Wolfgang Seemann

Sign in / Sign up

Export Citation Format

Share Document