Piezoelectric Unimorph and Bimorph Cantilever Configurations: Design Guidelines and Strain Assessment

Author(s):  
Abhijeet Giri ◽  
Shaikh Faruque Ali ◽  
Arunachalakasi Arockiarajan

Abstract Multi-stable configurations of piezoelectric harvesters are quite successful in achieving the two important goals, the broadband frequency response and large orbit oscillations exhibiting periodic, multi-periodic, and chaotic solutions. However, in the quest of achieving large amplitude broadband frequency response, assessment of induced strain levels considering the limits on the strain in piezoelectric material has received minimal attention. In this context, the investigation presents an analytical formulation for the assessment of induced strain and voltage(s) in piezoelectric unimorph and bimorph cantilevers. The formulation quantifies not only the induced voltage(s) in individual piezoelectric layers of a bimorph, but also the equivalent voltages in parallel and series connection modes, respectively. Also, while computing the induced voltage in the first piezoelectric layer, the contribution from the induced voltage of the second piezoelectric layer to the acting bending moment is captured in the formulation. The formulations are validated through the experiments and results from the literature. Further, we have applied two practically useful normalization schemes, the tp- and tt-normalizations to the analytical expressions. Using the two normalization schemes, influences of variation of substrate and adhesive layer thicknesses, elastic moduli of layers, and substrate-to-composite length fraction are visualized and discussed. Based on the results, summarized guidelines for design and selection of geometric and material parameters are presented, which are also applicable for other sensing and actuation applications. At last, practically suitable ranges and optimum values for the normalized design variables are proposed.

2021 ◽  
Vol 11 (11) ◽  
pp. 5031
Author(s):  
Wooseok Kim ◽  
Jeffrey A. Laman ◽  
Farzin Zareian ◽  
Geunhyung Min ◽  
Do Hyung Lee

Although integral abutment bridges (IABs) have become a preferred construction choice for short- to medium-length bridges, they still have unclear bridge design guidelines. As IABs are supported by nonlinear boundaries, bridge geometric parameters strongly affect IAB behavior and complicate predicting the bridge response for design and assessment purposes. This study demonstrates the effect of four dominant parameters: (1) girder material, (2) bridge length, (3) backfill height, and (4) construction joint below girder seats on the response of IABs to the rise and fall of AASHTO extreme temperature with time-dependent effects in concrete materials. The effect of factors influencing bridge response, such as (1) bridge construction timeline, (2) concrete thermal expansion coefficient, (3) backfill stiffness, and (4) pile-soil stiffness, are assumed to be constant. To compare girder material and bridge geometry influence, the study evaluates four critical superstructure and substructure response parameters: (1) girder axial force, (2) girder bending moment, (3) pile moment, and (4) pile head displacement. All IAB bridge response values were strongly related to the four considered parameters, while they were not always linearly proportional. Prestressed concrete (PSC) bridge response did not differ significantly from the steel bridge response. Forces and moments in the superstructure and the substructure induced by thermal movements and time-dependent loads were not negligible and should be considered in the design process.


2015 ◽  
Vol 119 (1222) ◽  
pp. 1513-1539 ◽  
Author(s):  
J. W. Lim

AbstractThis design study applied parameterisation to rotor blade for improved performance. In the design, parametric equations were used to represent blade planform changes over the existing rotor blade model. Design variables included blade twist, sweep, dihedral, and radial control point. Updates to the blade structural properties with changes in the design variables allowed accurate evaluation of performance objectives and realistic structural constraints – blade stability, steady moments (flap bending, chord bending, and torsion), and the high g manoeuvring pitch link loads. Performance improvement was demonstrated with multiple parametric designs. Using a parametric design with advanced aerofoils, the predicted power reduction was 1·0% in hover, 10·0% at μ = 0·30, and 17·0% at μ = 0·40 relative to the baseline UH-60A rotor, but these were obtained with a 35% increase in the steady chord bending moment at μ = 0·30 and a 20% increase in the half peak-to-peak pitch link load during the UH-60A UTTAS manoeuvre Low vibration was maintained for this design. More rigorous design efforts, such as chord tapering and/or structural redesign of the blade cross section, would enlarge the feasible design space and likely provide significant performance improvement.


1994 ◽  
Vol 116 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Barry Mathieu ◽  
Abhijit Dasgupta

Fracture of glass seals in metallic hermetic electronic packaging is a significant failure mode because it may lead to moisture ingress and also to loss of load carrying capacity of the glass seal. Seal glasses are intrinsically brittle and their fracture is governed by the stresses generated. This study investigates stresses in lead seals caused by handling, testing, mechanical vibration, and thermal excursions. Loads considered are axial tension, bending, and twisting of the lead. More general loading can be handled by superposition of these results. Factorial techniques, commonly used in multi-variable Design of Experiments (DoE), are used in conjunction with finite element parametric simulations, to formulate closed-form regression models which relate the maximum principal stress within the glass seal to the type of loading and geometry. The accuracy of the proposed closed-form equations are verified through analysis of residuals. The analysis reveals the sensitivity of the magnitude of the seal stress to design variables such as the materials and geometry of the seal, lead, and package. Manufacturing-induced problems such as defects and flaws are not considered. An additional purpose for presenting this study is to illustrate the use of design of experiment methods for developing closed-form models and design guidelines from simulation studies, in a multi-variable problem.


Author(s):  
Shutang You

This letter introduces a frequency response characteristic (FRC) curve and its application in high renewable power systems. In addition, the letter presents a method for fast frequency response assessment and frequency nadir prediction without performing dynamic simulations using detailed models. The proposed FRC curve and fast frequency response assessment method are useful for operators to understand frequency response performance of high renewable systems in real time.


Author(s):  
K.-C. Lin ◽  
G. E. Johnson

Abstract An expert system is developed for optimal spur gear design. Design automation is accomplished by dividing the design variables into different categories, i.e. geometric design variables and non-geometric design variables. The geometric variables are further divided into terms that are related to the gear mathematical model and terms that are determined according to the designer’s experience. By properly developing the mathematical model, numerical optimisation can be used to seek the best solution for a given set of geometric constraints. The process of determining the non-geometric design variables is automated by using symbolic computation. This gear design expert system is built according to the AGMA standards and a survey of gear design experts. The recommendations of gear designers and the information provided by AGMA standards are integrated into knowledge bases and data bases. By providing fast information retrieval and design guidelines, this expert system greatly streamlines the spur gear design process and makes it possible for a novice designer to achieve a reliable design in a short period of time.


2016 ◽  
Vol 120 (1232) ◽  
pp. 1604-1631 ◽  
Author(s):  
J.W. Lim

ABSTRACTThis design study applied parameterisation to rotor blade for improved performance. In the design, parametric equations were used to represent blade planform changes over the existing rotor blade model. Design variables included blade twist, sweep, dihedral and the radial control point. Updates to the blade structural properties with changes in the design variables allowed accurate evaluation of performance objectives and realistic structural constraints – blade stability, steady moments (flap bending, chord bending and torsion) and the high-g manoeuvre pitch link loads. Performance improvement was demonstrated with multiple parametric designs. Using a parametric design with advanced aerofoils, the predicted power reduction was 1.0% in hover, 10.0% at μ = 0.30 and 17.0% at μ = 0.40, relative to the baseline UH-60A rotor, but these were obtained with a 35% increase in the steady chord bending moment at μ = 0.30 and a 20% increase in the half peak-to-peak pitch link load during the UH-60A UTTAS manoeuvre. Low vibration was maintained for this design. More rigorous design efforts, such as chord tapering and/or structural redesign of the blade cross section, would enlarge the feasible design space and likely provide significant performance improvement.


Sign in / Sign up

Export Citation Format

Share Document