Bipolar electronic charge transport model under trap density Gaussian spatial distribution: application to dielectric polymer interfaces

2019 ◽  
Vol 94 (10) ◽  
pp. 105819
Author(s):  
E Belgaroui ◽  
A Kallel
2013 ◽  
Vol 114 (2) ◽  
pp. 024501 ◽  
Author(s):  
Seyyed Sadegh Mottaghian ◽  
Matt Biesecker ◽  
Khadijeh Bayat ◽  
Mahdi Farrokh Baroughi

2016 ◽  
Vol 119 (2) ◽  
pp. 024508 ◽  
Author(s):  
James R. Scheuermann ◽  
Yesenia Miranda ◽  
Hongyu Liu ◽  
Wei Zhao

CrystEngComm ◽  
2014 ◽  
Vol 16 (33) ◽  
pp. 7621-7625 ◽  
Author(s):  
Cody J. Gleason ◽  
Jordan M. Cox ◽  
Ian M. Walton ◽  
Jason B. Benedict

Single crystal structures, luminescent properties and electronic structure calculations of three polymorphs of the opto-electronic charge transport material 4,4′-bis(9-carbazolyl)biphenyl.


1995 ◽  
Vol 393 ◽  
Author(s):  
Joyce Albritton Thomas ◽  
Grant M. Kloster ◽  
D. Shriver ◽  
C. R. Kannewurf

ABSTRACTRecently, there has been considerable interest in advanced materials and processing techniques for practical applications. V2O5 xerogels have generated much attention because they are layered materials that undergo reversible redox intercalation with lithium. The sol-gel process has been used to intercalate V2O5 xerogels with the polymer electrolyte, oxymethylene linked poly(ethylene oxide) - lithium triflate [(a-PEO)n(LiCF3SO3)]. The resulting nanocomposite is a mixed ionic-electronic conductor in which the ionic charge carriers in the polymer electrolyte are in intimate contact with the electronic charge carriers in the V205 xerogel. Variable-temperature electronic conductivity and thermoelectric power measurements have been performed to examine the charge transport properties.


Sign in / Sign up

Export Citation Format

Share Document